计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240700030-9.doi: 10.11896/jsjkx.240700030
谭佳慧1, 文琛言1, 黄巍2, 胡凯1
TAN Jiahui1, WEN Chenyan1, HUANG Wei2, HU Kai1
摘要: 针对脑出血CT图像处理中遇到的出血区域空间位置、形状、尺寸多变性以及与周围组织强度值相近导致边界难以确定等挑战,提出了一种改进TransUNet的图像分割模型(ESC-TransUNet)。该模型首先在上采样前增添了显式视觉中心(Explicit Visual Center,EVC),能够捕获图像中远距离像素的关联程度,并保留输入图像中局部边角区域的详细信息,有助于有效提取出血区域特征。其次,在编码器阶段引入了注意力混洗机制(Shuffle Attention,SA),有效地学习了出血区域与背景间的微小差异,从而提高了分割任务的精确度。最后,在解码器阶段采用CBM2结构促进信息更有效传递,增强模型泛化能力和准确性。在脑出血公开数据集Physionet(PHY) 上进行了大量实验,结果表明,所提方法超过了其他9种主要的分割方法,在脑出血CT图像分割任务中获得了更优异的性能。
中图分类号:
[1]QURESHI A I,MENDELOW A D,HANLEY D F.Intracerebral haemorrhage[J].The Lancet,2009,373(9675):1632-1644. [2]RAMPHUL K,RAMPHUL Y,SOMBANS S L,et al.Inci-dence and mortality rates of acute ischemic stroke in hospitalized patients in the United States[J].Archives of Medical Science-Atherosclerotic Diseases,2021,6(1):132-134. [3]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation [C]//Medical Image Computing and Computer-assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,proceedings,part III.Springer International Publishing,2015:234-241. [4]MILLETARI F,NAVAB N,AHMADI S A.V-net:Fully convolutional neural networks for volumetric medical image segmentation[C]//In 2016 Fourth International Conference on 3D Vision(3DV).IEEE,2016:565-571. [5]ZHANG Z,LIU Q,WANG Y.Road extraction by deep residual u-net[J].IEEE Geoscience and Remote Sensing Letters,2018,15(5):749-753. [6]ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.Unet++:A nested u-net architecture for medical image segmentation [C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support:4th International Workshop,DLMIA 2018,and 8th International Workshop,ML-CDS 2018,Held in Conjunction with MICCAI 2018,Granada,Spain,September 20,2018,Proceedings.Springer International Publishing,2018:3-11. [7]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:Learning where to look for the pancreas [J].arXiv:1804.03999,2018. [8]IBTEHAZ N,RAHMAN M S.MultiResUNet:Rethinkingthe U-Net architecture for multimodal biomedical image segmentation [J].Neural Networks,2020,121:74-87. [9]ALOM M Z,YAKOPCIC C,TAHA T M,et al.Nuclei segmentation with recurrent residual convolutional neural networks based U-Net(R2U-Net)[C]//Proceedings of NAECON 2018-IEEE National Aerospace and Electronics Conference.IEEE,2018:228-233. [10]ASHISH V.Attention is all you need [C]//Advances in Neural Information Processing Systems.2017. [11]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words [J].arXiv:2010.11929,2020. [12]CHEN J,LU Y,YU Q,et al.Transunet:Transformers makestrong encoders for medical image segmentation [J].arXiv:2102.04306,2021. [13]ZHANG Y,LIU H,HU Q.Transfuse:Fusing transformers and CNNs for medical image segmentation [C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021:24th International Conference,Strasbourg,France,September 27-October 1,2021,Proceedings,Part I.Springer International Publishing,2021:14-24. [14]CAO H,WANG Y,CHEN J,et al.Swin-UNet:UNet-like pure transformer for medical image segmentation [C]//European Conference on Computer Vision.Cham:Springer Nature Swit-zerland,2022:205-218. [15]QUAN Y,ZHANG D,ZHANG L,et al.Centralized feature pyramid for object detection [J].IEEE Transactions on Image Processing,2023,32(6):1234-1245. [16]ZHANG Q L,YANG Y B.Sa-net:Shuffle attention for deep convolutional neural networks [C]//ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2021:2235-2239. [17]MISRA D.Mish:A self regularized non-monotonic activationfunction [J].arXiv:1908.08681,2019. [18]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient CNN architecture design [C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:116-131. [19]HSSAYENI M,CROOCK M,SALMAN A,et al.Computedtomography images for intracranial hemorrhage detection and segmentation.Intracranial hemorrhage segmentation using a deep convolutional model [J].Data,2020,5(1):14. [20]YIN B,ZHANG X,HOU Q,et al.Camoformer:Masked separable attention for camouflaged object detection [J].arXiv:2212.06570,2022. [21]ROY S,KOEHLER G,ULRICH C,et al.MedNext:Transformer-driven scaling of ConvNets for medical image segmentation [C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer Nature Switzerland,2023:405-415. [22]SUN G,PAN Y,KONG W,et al.DA-TransUNet:IntegratingSpatial and Channel Dual Attention with Transformer U-Net for Medical Image Segmentation [J].arXiv:2310.12570,2023. [23]CHEN Y,ZOU B,GUO Z,et al.ScUnet++:Swin-UNet and CNN bottleneck hybrid architecture with multi-fusion dense skip connection for pulmonary embolism CT image segmentation [C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.IEEE/CVF,2024:7759-7767. [24]LAN L,CAI P,JIANG L,et al.BRAU-Net++:U-ShapedHybrid CNN-Transformer Network for Medical Image Segmentation [J].arXiv:2401.00722,2024. |
|