计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 119-128.doi: 10.11896/jsjkx.240700053

• 数据库&大数据&数据科学 • 上一篇    下一篇

融合词间句间多关系建模的评论推荐算法

邓策渝1, 李段腾川1,2, 胡奕仁2, 王晓光1, 李志飞3   

  1. 1 武汉大学信息管理学院 武汉 430072
    2 武汉大学计算机学院 武汉 430072
    3 湖北大学计算机与信息工程学院 武汉 430062
  • 收稿日期:2024-07-08 修回日期:2024-11-04 出版日期:2025-04-15 发布日期:2025-04-14
  • 通讯作者: 李段腾川(dtclee1222@whu.edu.cn)
  • 作者简介:(ceyudeng@163.com)
  • 基金资助:
    国家社会科学基金重大项目(21&ZD334);国家自然科学基金(62207011)

Joint Inter-word and Inter-sentence Multi-relationship Modeling for Review-basedRecommendation Algorithm

DENG Ceyu1, LI Duantengchuan1,2, HU Yiren2, WANG Xiaoguang1, LI Zhifei3   

  1. 1 School of Information Management,Wuhan University,Wuhan 430072,China
    2 School of Computer Science,Wuhan University,Wuhan 430072,China
    3 School of Computer and Information Engineering,Hubei University,Wuhan 430062,China
  • Received:2024-07-08 Revised:2024-11-04 Online:2025-04-15 Published:2025-04-14
  • About author:DENG Ceyu,born in 2002,postgraduate,is a student member of CCF(No.P0293G).His main research interests include recommender system and natural language processing.
    LI Duantengchuan,born in 1994,Ph.D,is a member of CCF(No.J0537G).His main research interests include recommender system,knowledge graph and computer vision.
  • Supported by:
    Major Project of the National Social Science Fundation of China(21&ZD334) and National Natural Science Foundation of China(62207011).

摘要: 评论作为最常见的辅助信息,能够直观地表达用户的喜好和物品的属性,被研究者们广泛应用于优化推荐算法的预测精度。然而,目前评论推荐算法仍存在不足,主要体现在忽略了对评论文本多粒度特征的建模和对用户偏好、物品属性这一对异质特征的关联性交互学习,导致模型无法充分提取评论信息,影响了模型精度。因此,提出了融合词间句间多关系建模的评论推荐算法(MR4R),通过分析评论文本的词间重要性关系和句间时序动态关系,抽取不同层次的特征信息;设计了融合预测层,对用户偏好与物品属性特征间的关联性挖掘过程进行优化,并通过高阶非线性计算进行评分预测。选取了4个不同场景的数据集,并将所提模型与目前主流的7种推荐算法进行比较。实验结果表明,融合词间句间多关系建模的推荐算法能够充分提取评论中蕴含的信息,显著提升了平均推荐精度,具有更强的推荐性能。

关键词: 评论推荐算法, 深度学习, 多关系建模, 时序特征建模, 异质特征融合与交互

Abstract: Reviews,a prevalent form of auxiliary information,directly reflect user preferences and item characteristics,extensively utilized by researchers to enhance the predictive accuracy of recommendation algorithms.However,the current review recommendation algorithm still has shortcomings,which are mainly reflected in the fact that the existing model ignores the modeling of multi-granularity feature extraction of review text and the relational interactive learning of user preferences and item attributes,a pair of heterogeneous features.This oversight leads to insufficient extraction of review information,compromising model accuracy.Thus,joint inter-word and inter-sentence multi-relationship modeling for review-based recommendation algorithm(MR4R) is introduced in the study.Firstly,multi-relational modeling strategy is adopted to analyze inter-word and inter-sentence relationships in review texts to extract layered feature information,thereby enriching the model’s grasp of user preferences and refining item attribute representations.The fusion and prediction layer is designed to optimize the correlation mining process between user preferences and item attributes,and the score prediction is carried out by high order nonlinear calculation.The proposed model is compared with seven current mainstream recommendation algorithms on four distinct datasets.The results demonstrate that the recommendation algorithm,which incorporates multi-relational modeling between words and sentences,effectively extracts information embedded in reviews,significantly enhancing average recommendation accuracy and exhibiting superior performance.

Key words: Review-based recommendation algorithm, Deep learning, Multi-relation modeling, Temporal feature modeling, Heterogeneous feature fusion and interaction

中图分类号: 

  • TP391.3
[1]ALMAHMOOD R,TEKEREK A.Issues and solutions in deep learning-enabled recommendation systems within the e-commerce field[J].Applied Sciences,2022,12(21):11256.
[2]ZHANG Y,YAMASAKI T.Style-aware image recommendation for social media marketing[C]//Proceedings of the 29th ACM International Conference on Multimedia.Virtual Event China:ACM,2021:3106-3114.
[3]BAO J,ZHANG K,WU L,et al.Conformity-Aware DebiasedNeural News Recommendation with Causal Reasoning [J].Journal of Computers,2024,47(10):2333-2351.
[4]HUANG F.Personalized marketing recommendation system of new media short video based on deep neural network data fusion[J].Journal of Sensors,2021(9):3638071-1-3638071-10.
[5]HU H,TANG B,ZHANG Y,et al.Vehicular ad hoc networkrepresentation learning for recommendations in internet of things[J].IEEE Transactions on Industrial Informatics,2020,16(4):2583-2591.
[6]MARLIN B.Modeling user rating profiles for collaborative filtering[C]//In Proceedings of the 16th International Conference on Neural Information Processing Systems(NIPS'03).MIT Press,2003:627-634.
[7]DUECK D,FREY B.Probabilistic sparse matrix factorization[J/OL].https://www.utstat.toronto.edu/~rsalakhu/papers/nips_draft2.pdf.
[8]WU L,HE X,WANG X,et al.A Survey on Accuracy-Oriented Neural Recommendation:From Collaborative Filtering to Information-Rich Recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(3):4425-4445.
[9]PENG Y,MENG X,DU Z.Survey on Diversified Recommendation [J/OL].https://kns.cnki.net/kcms2/article/abstract?v=VcTOyLYtvEzOwCd11mwJ-hVJXwfMb4v6Ys4t0tFv1HP-jBg-NVHfjrsJgRXIcSbPD4HG04T6rtVXQnpNK1QxqGt8l01-f3Hu-9AyxVyPJpgNlzsgL4IZ5DPdUTCr-SfvYh7WY0480bhguK683-N4a5hhKmxnf9xKwXCr7NLXnJjzJ6vRXUfdMNhFcRVAA4Y-j1hB&uniplatform=NZKPT&language=CHS.
[10]ZHOU Y,CHU H,ZHU F,et al.A Survey on Deep Learning-based Personalized Learning Resource Recommendation[J].Computer science,2024,51(10):17-32.
[11]KIM Y.Convolutional Neural Networks for Sentence Classification[C]//Empirical Methods in Natural Language Processing(EMNLP).Doha,Qatar:Association for Computational Linguistics,2014:1746-1751.
[12]ZAREMBA W,SUTSKEVER I,VINYALS O.Recurrent Neural Network Regularization[J].arXiv,:1409.2329,2014.
[13]WANG Z,SHAO Y,HE J,et al.Sequential RecommendationBased on Multi-space Attribute Information Fusion[J].Computer Science,2019,51(3):102-108.
[14]ZHOU L,WANG J,WANG L,et al.Heterogeneous Informa-tion Network Representation Learning:A Survey[J].Journal of Computers,2022,45(1):160-189.
[15]XIAO J,YE H,HE X,et al.Attentional factorization machines:learning the weight of feature interactions via attention networks[C]//International Joint Conference on Artificial Intelligence(IJCAI’17).AAAI Press,2017:3119-3125.
[16]HUANG Z,XU W,YU K.Bidirectional LSTM-CRF Models for Sequence Tagging[J].arXiv:1508.01991.2015.
[17]LUONG T,PHAM H,MANNING C D.Effective Approaches to Attention-based Neural Machine Translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1412-1421.
[18]CHEN W,XING X,XU X,et al.Key-Sparse Transformer forMultimodal Speech Emotion Recognition[C]//IEEE International Conference on Acoustics,Speech and Signal Processing.2022:6897-6901.
[19]CHENG H,KOC L,HARMSEN J,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.Association for Computing Machinery,2016:7-10.
[20]WANG R,FU B,FU G,et al.Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD’17.Association for Computing Machinery,2017.
[21]GUO H,TANG R,YE Y,et al.DeepFM:a factorization-ma-chine based neural network for ctr prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.AAAI Press,2017:1725-1731.
[22]ZHANG W,DU T,WANG J.Deep learning over multi-field categorical data[M]//Advances in Information Retrieval.Cham:Springer International Publishing,2016:45-57.
[23]RENDLE S.Factorization Machines[C]//2010 IEEE International Conference on Data Mining.IEEE Press,2010:995-1000.
[24]LU X,FENG J,HAN Y,et al.GraphMLP-Mixer:A Graph-MLP Architecture for Efficient Multi-Behavior Sequential Re-commendation Method[J].Journal of Computer Research and Development.2024,61(8):1917-1929.
[25]LI S,XIE R,ZHU Y,et al.User-centric conversational recommendation with multi-aspect user modeling[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2022:223-233.
[26]DENG Y,ZHANG W,XU W,et al.A unified multi-task lear-ning framework for multi-goal conversational recommender systems[J].ACM Transactions on Information Systems,2023,41(3):25.
[27]LONG X,HUANG C,XU Y,et al.Social recommendation with self-supervised metagraph informax network[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.Association for Computing Machinery,2021:1160-1169.
[28]MCAULEY J,LESKOVEC J.Hidden factors and hidden topics:understanding rating dimensions with review text[C]//Procee-dings of the 7th ACM Conference on Recommender Systems.Hong Kong China:ACM,2013:165-172.
[29]LING G,LYU M,KING I.Ratings meetreviews,a combinedapproach to recommend[C]//Proceedings of the 8th ACM Conference on Recommender Systems.ACM,2014:105-112.
[30]BAO Y,FANG H,ZHANG J.TopicMF:simultaneously exploiting ratings and reviews for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014.
[31]ZHENG L,NOROOZI V,YU P.Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.Cambridge United Kingdom:ACM,2017:425-434.
[32]KIM D,PARK C,OH J,et al.Convolutional Matrix Factorization for Document Context-Aware Recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems.2016:233-240.
[33]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//International Conference on Neural Information Processing Systems(NIPS’17).2017:6000-6010.
[34]CHEN C,ZHANG M,LIU Y,et al.Neural attentional rating regression with review-level explanations[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web-WWW’18.ACM Press,2018:1583-1592.
[35]LU Y,DONG R,SMYTH B.Coevolutionary recommendationmodel:mutual learning between ratings and reviews[C]//Proceedings of the 2018 World Wide Web Conference on World Wide Web-WWW’18.ACM Press,2018:773-782.
[36]TAY Y,TUAN L,HUI S.Multi-pointer co-attention networks for recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:2309-2318.
[37]RASHED A,ELSAYED S,SCHMIDT-THIEME L.CARCA:context and attribute-aware next-item recommendation via cross-attention[C]//Sixteenth ACM Conference on Recommender Systems.2022.
[38]SUN P,WU L,ZHANG K,et al.Dual learning for explainable recommendation:towards unifying user preference prediction and review generation[C]//Proceedings of The Web Conference 2020.Taipei Taiwan:ACM,2020:837-847.
[39]WANG X,OUNIS I,MACDONALD C.Leveraging reviewproperties for effective recommendation[C]//Proceedings of the Web Conference 2021.2021:2209-2219.
[40]SHUAI J,ZHANG K,WU L,et al.A review-aware graph contrastive learning framework for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.Association for Computing Machinery,2022:1283-1293.
[41]DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//North American Chapter of the Association for Computational Linguistics.Minneapolis,Minnesota:Association for Computational Linguistics,2019:4171-4186.
[42]WU L,QUAN C,LI C,et al.A Context-Aware User-Item Representation Learning for Item Recommendation[J].ACM Trans.Inf.Syst,2019,37(2):29.
[43]SALAKHUTDINOV R,MNIH A.Probabilistic Matrix Factorization[C]//Neural Information Processing Systems(NIPS).Curran Associates Inc,2007:1257-1264.
[44]LIU D,LI J,DU B,et al.DAML:Dual Attention Mutual Learning between Ratings and Reviews for Item Recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:344-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!