计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 144-151.doi: 10.11896/jsjkx.240700122
罗驰1, 陆凌云2, 刘飞1
LUO Chi1, LU Lingyun2, LIU Fei1
摘要: 偏微分方程(PDE)是描述现实系统的重要数学工具,对其进行求解可以预测和分析系统的行为。PDE的解析解通常难以获取,一般通过数值法进行近似解算,但数值法求解参数化PDE时效率较低。近年来,利用深度学习求解PDE的方法在应对上述问题时展现出了优势,特别是傅里叶神经算子FNO(Fourier Neural Operator)已在此类问题中展现出显著成效。然而,FNO仅通过频域上的卷积来提取全局信息,难以捕获PDE的多尺度信息。针对此挑战,提出一种基于局部增强的FNO模型,在傅里叶层引入并行多尺寸卷积模块,通过不同尺寸的卷积提高模型捕获局部多尺度信息的能力。同时,在线性层后引入一种多分支特征融合模块,通过将数据提升到不同通道进行学习来提高模型整合多通道信息的能力。实验结果表明,该模型在Burgers方程的求解中误差降低了30.9%,在Darcy Flow方程的求解中误差降低了18.5%,在Navier-Stokes方程的求解中误差降低了5.5%。
中图分类号:
[1]KARNIADAKIS G E,KEVREKIDIS I G,LU L,et al.Physics-informed machine learning[J].Nature Reviews Physics,2021,3(6):422-440. [2]ZHANG T,LIU R Y,WANG P X,et al.Machine Learning with Perceptual Physical Priors and Its Prospects in Geospatial Intelligence Research[J].Journal of Geo-information Science,2023,25(7):1297-1311. [3]RAISSI M,PERDIKARIS P,KARNIADAKIS G.Physics-in-formed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J].Journal of Computational Physics,2019,378:686-707. [4]HU S,LIU M,ZHANG S,et al.Physics-informed neural network combined with characteristic-based split for solving forward and inverse problems involving Navier-Stokes equations[J].Neurocomputing,2024,573:127240. [5]YAZDANI A,LU L,RAISSI M,et al.Systems biology informed deep learning for inferring parameters and hidden dynamics[J].PLoS Computational Biology,2020,16(11):e1007575. [6]DIAO Y,YANG J,ZHANG Y,et al.Solving multi-materialproblems in solid mechanics using physics-informed neural networks based on domain decomposition technology[J].Computer Methods in Applied Mechanics and Engineering,2023,413:116120. [7]ZHAO Y,GUO L,WONG P P L.Application of physics-informed neural network in the analysis of hydrodynamic lubrication[J].Friction,2023,11(7):1253-1264. [8]LI Z,KOVACHKI N B,AZIZZADENESHELI K,et al.Fourier Neural Operator for Parametric Partial Differential Equations[C]//International Conference on Learning Representations(ICLR).2021:1-12. [9]KURTH T,SUBRAMANIAN S,HARRINGTON P,et al.Fourcastnet:Accelerating global high-resolution weather forecasting using adaptive fourier neural operators[C]//The Platform for Advanced Scientific Computing Conference.2022:1-15. [10]LI B,WANG H,FENG S,et al.Solving Seismic Wave Equations on Variable Velocity Models With Fourier Neural Operator[J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-18. [11]GUAN S,HSU K T,CHITNIS P V.Fourier neural operator network for fast photoacoustic wave simulations[J].Algorithms,2023,16(2):124. [12]TRAN A,MATHEWS A,XIE L,et al.Factorized Fourier Neural Operators[C]//The Eleventh International Conference on Learning Representations(ICLR).2023:1-12. [13]BONEV B,KURTH T,HUNDT C,et al.Spherical FourierNeural Operators:Learning Stable Dynamics on the Sphere[C]//The 40th International Conference on Machine Learning(ICML).2023:2806-2823. [14]HELWIG J,ZHANG X,FU C,et al.Group uivariant FourierNeural Operators for Partial Differential Equations[C]//The 40th International Conference on Machine Learning(ICML).2023:12907-12930. [15]WHITE C,TU R,KOSSAIFI J,et al.Speeding up Fourier Neural Operators via Mixed Precision[J].arXiv:2307.15034,2023. [16]ZHAO X,SUN Y,ZHANG T,et al.Local Convolution En-hanced Global Fourier Neural Operator for Multiscale Dynamic Spaces Prediction[J].arXiv:2311.12902,2023. [17]SZEGEDY C,LIU W,JIA Y,et al.Going Deeper with Convolutions[C]//The IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:1-9. [18]WU G,JIANG J,JIANG K,et al.Fully 1×1 Convolutional Network for Lightweight Image Super-Resolution[J].arXiv:2307.16140,2023. [19]SHELHAMER E,LONG J,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651. [20]RONNEBERGER O,FISCHER P,BROX T.U-Net:ConvolutionalNetworks for Biomedical Image Segmentation[C]//The International Conference on Medical Image Computing and Compu-ter-Assisted Intervention(MICCAI).Springer,2015:234-241. [21]LU L,JIN P,PANG G,et al.Learning nonlinear operators via DeepONet based on the universal approximation theorem of ope-rators[J].Nature Machine Intelligence,2021,3(3):218-229. [22]VINUESA R,BRUNTON S L.Enhancing computational fluid dynamics with machine learning[J].Nature Computational Science,2022,2(6):358-366,385. |
|