计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 287-295.doi: 10.11896/jsjkx.240700193

• 人工智能 • 上一篇    下一篇

基于形状离散层的多智能体编队控制

潘云伟, 李敏, 曾祥光, 邢丽静, 黄傲   

  1. 西南交通大学机械工程学院 成都 610000
  • 收稿日期:2024-07-29 修回日期:2024-10-20 出版日期:2025-10-15 发布日期:2025-10-14
  • 通讯作者: 李敏(min_li@swjtu.edu.cn)
  • 作者简介:(1425373665@qq.com)
  • 基金资助:
    四川省科技厅重点研发计划(2023YFG0285);国家自然科学基金面上项目(52075456)

Multi-agent Formation Control Based on Discrete Layers of Formation Shapes

PAN Yunwei, LI Min, ZENG Xiangguang, XING Lijing, HUANG Ao   

  1. School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610000,China
  • Received:2024-07-29 Revised:2024-10-20 Online:2025-10-15 Published:2025-10-14
  • About author:PAN Yunwei,born in 1997,postgra-duate,is a member of CCF(No.U9383G).His main research interests include multi-agent system,path planning and reinforcement learning.
    LI Min,born in 1981,Ph.D,lecturer.His main research interests include machine learning and intelligent control.
  • Supported by:
    Key R&D Program of Sichuan Provincial Department of Science and Technology, China (2023YFG0285) and National Natural Science Foundation of China(52075456).

摘要: 由多个智能体组成的多智能体系统,能够完成复杂的任务。针对多智能体在复杂环境中的编队成型,以及编队遭受冲击时的编队重组,提出了一种基于编队形状离散层的分布式编队控制方法。首先,对编队形状进行离散和迭代,扩大其影响范围,并将编队信息共享给每个智能体;其次,针对存在障碍物的编队环境,设计动态协商算法实时调整编队集结位置;最后,采用分布式控制的方式,利用传感器信息和编队形状信息设计速度控制器,实现动态避障和复杂编队成型。实验结果表明,所提方法能够很好地引导多智能体形成复杂的编队形状,在有障碍物的环境中,实现编队避障、偏移和重组。通过编队成型时间和编队效果函数对实验结果进行评价和分析,验证了所提方法具有较好的环境适应性和有效性。

关键词: 多智能体, 编队, 动态协商, 分布式, 避障

Abstract: A multi-agent system with multiple agents capable of completing complex tasks.In view of the formation of multi-agent in complex environment and the formation reorganization when the formation is impacted,a distributed formation control method based on the discrete layer of formation shape is proposed.Firstly,the formation shape is discretized and iterative,its influence range is expanded,and the formation information is shared with each agent.Secondly,for environments with obstacles,a dynamic negotiation algorithm is designed to adjust the formation's assembly position in real time.Finally,a speed controller is designed using sensor information and formation shape data,employing a distributed control method to achieve dynamic obstacle avoidance and manage complex formations.Experimental results show that the proposed method effectively guides multiple agents in forming complex formation shapes and enables formation obstacle avoidance,offset adjustment,and reorganization in environments with obstacles.Evaluation and analysis of the experimental results,using metrics for formation shaping time and perfor-mance,validate the method's strong environmental adaptability and effectiveness.

Key words: Multi-agent,Formation,Dynamically negotiate,Distributed,Obstacle avoidance

中图分类号: 

  • TP242
[1]GELBLUM A,PINKOVIEZKY I,FONIO E,et al.Ant groups optimally amplify the effect of transiently informed individuals [J].Nature Communications,2015,6(1):7729.
[2]YIN Z,HE W,ZOU Y,et al.Efficient Formation of Flapping-wing Aerial Vehicles Based on Wild Geese Queue Effect [J].Zidonghua Xuebao/Acta Automatica Sinica,2021,47(6):1355-1367.
[3]TSANG K F E,NI Y Q,WONG C F R,et al.A novel ware-house multi-robot automation system with semi-complete and computationally efficient path planning and adaptive genetic task allocation algorithms[C]//2018 15th International Conference on Control,Automation,Robotics and Vision.2018.
[4]SUN D,TANG Q R,LIU M H,et al.Research on swarm formation control of modular underwater robots[J].Ship Science and Technology,2024,46(2):68-73.
[5]SONG W,WANG T,YANG G X,et al.A Self-OrganizationFormation Configuration Based Assignment Probability and Collision Detection [J].Journal of Systems Engineering and Electronics,2024,35(1):222-232.
[6]CHOI Y H,KIM D.Distance-Based Formation Control withGoal Assignment for Global Asymptotic Stability of Multi-Robot Systems [J].IEEE Robotics and Automation Letters,2021,6(2):2020-2027.
[7]ZHANG Y J,ZHOU R,LI X,et al.Mean-Shift Shape Formation of Multi-Robot Systems Without Target Assignment [J].IEEE Robotics and Automation Letters,2024,9(2):1772-1779.
[8]SLAVKOV I,CARRILLO-ZAPATA D,CARRANZA N,et al.Morphogenesis in robot swarms [J].Science Robotics,2018,3(25):eaau9178.
[9]RUBENSTEIN M,CORNEJO A,NAGPAL R.Programmableself-assembly in a thousand-robot swarm [J].Science,2014,345(6198):795-799.
[10]LIU X Y,GUO R H,REN C C,et al.Distributed Target Assignment Method for UAV Swarms Using Identity Hungarian Algorithm[J].Acta Armamentarii,2023,44(9):2824-2835.
[11]HU C F,SONG S H,XU J J,et al.Distributed Task Allocation Based on Auction-PIO Algorithm for Multi-UAV Tracking[J].Journal of Tianjin University:Science and Technology,2024,57(4):403-414.
[12]AVCI S,YILDIRIM M.Solving Weapon-Target AssignmentProblem with Salp Swarm Algorithm [J].Tehnicki Vjesnik,2023,30(1):17-23.
[13]KONG X R,ZHOU Y T,LI Z,et al.Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments [J].Frontiers in Neurorobotics,2024,17:1302898.
[14]MENG F Q,TIAN K S,WU C F.Deep Reinforcement Lear-ning-Based Radar Network Target Assignment [J].IEEE Sensors Journal,2021,21(14):16315-16327.
[15]ALONSO-MORA J,BREITENMOSER A,RUFLI M,et al.Image and animation display with multiple mobile robots [J].International Journal of Robotics Research,2012,31(6):753-773.
[16]WANG H L,RUBENSTEIN M,RUBENSTEIN M.Shape Formation in Homogeneous Swarms Using Local Task Swapping [J].IEEE Transactions on Robotics,2020,36(3):597-612.
[17]SAKURAMA K,AHN H S.Multi-agent coordination over local indexes via clique-based distributed assignment [J].Automatica,2020,112:108670.
[18]ALHAFNAWI M,HAUERT S,O'DOWD P.Self-OrganisedSaliency Detection and Representation in Robot Swarms [J].IEEE Robotics and Automation Letters,2021,6(2):1487-1494.
[19]XU X,LI R P,ZHAO Z F,et al.Stigmergic Independent Reinforcement Learning for Multiagent Collaboration [J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(9):4285-4299.
[20]REZECK P,CHAIMOWICZ L.Chemistry-Inspired Pattern Formation with Robotic Swarms [J].IEEE Robotics and Automation Letters,2022,7(4):9137-9144.
[21]BI Q,HUANG Y.A Self-organized Shape Formation Method For Swarm Controlling[C]//Proceedings of the 37th Chinese Control Conference.2018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!