计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 282-293.doi: 10.11896/jsjkx.240700201

• 人工智能 • 上一篇    下一篇

利用语义增强提示和结构信息的知识图谱补全模型

蔡启航, 徐彬, 董晓迪   

  1. 东北大学计算机科学与工程学院 沈阳 110169
  • 收稿日期:2024-07-31 修回日期:2024-10-21 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 徐彬(xubin@mail.neu.edu.cn)
  • 作者简介:(qducqh@163.com)
  • 基金资助:
    国家自然科学基金(62137001);辽宁省自然科学基金面上项目(2022-MS-119)

Knowledge Graph Completion Model Using Semantically Enhanced Prompts and Structural Information

CAI Qihang, XU Bin, DONG Xiaodi   

  1. School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China
  • Received:2024-07-31 Revised:2024-10-21 Online:2025-09-15 Published:2025-09-11
  • About author:CAI Qihang,born in 1999,postgra-duate,is a member of CCF(No.U9520G).Her main research interest includes knowledge graph completion.
    XU Bin,born in 1980,Ph.D,associate professor,is a member of CCF(No.21664S).His main research interests include artificial intelligence and smart education.
  • Supported by:
    National Natural Science Foundation of China(62137001) and Liaoning Natural Science Foundation(2022-MS-119).

摘要: 知识图谱补全旨在根据已有事实推断新事实,增强知识图谱的全面性和可靠性,从而提升其实用价值。为了解决现有基于预训练语言模型的方法对头实体和尾实体预测效果差异大、连续提示初始化随机性强导致训练过程波动较大以及未充分利用知识图谱结构信息的问题,提出了利用语义增强提示和结构信息的知识图谱补全模型(SEPS-KGC)。该模型遵循多任务学习框架,联合知识图谱补全任务与实体预测任务。首先,设计了基于示例引导的关系模板生成方法,针对预测头实体和预测尾实体的不同任务,利用大语言模型生成两种更具针对性的关系提示模板,并结合语义辅助信息,使模型更好地理解实体间的语义关联。其次,设计了基于有效初始化的提示学习方法,使用关系标签的预训练嵌入进行初始化。最后,设计了结构信息提取模块,利用卷积和池化操作提取知识图谱结构信息,提升模型的稳定性和关系理解能力。在两个公开数据集上进行实验,证明了SEPS-KGC的有效性。

关键词: 知识图谱, 知识图谱补全, 预训练语言模型, 大语言模型, 提示学习, 结构信息

Abstract: Knowledge graph completion aims to infer new facts based on existing facts,enhance the comprehensiveness and reliability of the knowledge graph,and thus improve its practical value.In order to solve the problems that existing methods based on pre-trained language models have large differences in the prediction effects of head and tail entities,large fluctuations in the training process due to the stochastic initialization of consecutive prompts,and under-utilization of structural information of the know-ledge graph,this paper proposes the knowledge graph completion model using semantically enhanced prompts and structural information(SEPS-KGC).The model follows a multi-task learning framework that unites the knowledge graph completion task with the entity prediction task.Firstly,an example-guided relationship templates generation method is designed to generate two more targeted relationship prompt templates using a large language model for the different tasks of predicting head entities and predicting tail entities,and incorporating semantic auxiliary information to enable the model to better understand the semantic associations between entities.Secondly,a prompt learning method based on effective initialization is designed,using pre-trained embeddings of relational labels for initialization.Finally,a structural information extraction module is designed to extract knowledge graph structural information using convolution and pooling operations to improve the stability and relationship understanding of the model.The effectiveness of SEPS-KGC is demonstrated on two public datasets.

Key words: Knowledge graph, Knowledge graph completion, Pre-trained language model, Large language model, Prompt learning, Structural information

中图分类号: 

  • TP391
[1]XIONG C Y,POWER R,CALLAN J.Explicit semantic ranking for academic search via knowledge graph embedding[C]//Proceedings of the 26th International Conference on World Wide Web.ACM,2017:1271-1279.
[2]SAXENA A,TRIPATHI A,TALUKDAR P.Improving multi-hop question answering overknowledge graphs using knowledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2020:4498-4507.
[3]WANG H W,ZHANG F Z,ZHANG M D,et al.Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining.New York:ACM,2019:968-977.
[4]BOLLACKER K,EVANS C,PARITOSH P,et al.FreeBase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.ACM,2008:1247-1250.
[5]VRANDEČIĆ D,KRÖTZSCH M.Wikidata:a free collaborative knowledgebase[J].Communications of the ACM,2014,57(10):78-85.
[6]LEHMANN J,ISELE R,JAKBO M,et al.DBpedia-a large-scale,multilingual knowledge base extracted from Wikipedia[J].Semantic Web,2015,6(2):167-195.
[7]SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International World Wide Web Conference.New York:ACM,2007:697-706.
[8]DONG X,GABRILOVICH E,HEITZ G,et al.Knowledgevault:a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SI-GKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2014:601-610.
[9]WEST R,GABRILOVICH E,MURPHY K,et al.Knowledge base completion via search-based question answering[C]//Proceedings of the 23rd International Conference on World Wide Web.ACM,2014:515-526.
[10]YAO L,MAO C S,LUO Y.KG-BERT:BERT for knowledge graph completion[J].arXiv:1909.03193,2019.
[11]LYU X,LIN Y K,CAO Y X,et al.Do pre-trained models benefit knowledge graph completion? a reliable evaluation and a reasonable approach[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2022:3570-3581.
[12]CHOI B,JANG D,KO Y.MEM-KGC:masked entity model for knowledge graph completion with pre-trained language model[J].IEEE Access,2021,9:132025-132032.
[13]LIU X,ZHENG Y N,DU Z X,et al.Gpt understands,too[J].arXiv:2103.10385,2021.
[14]CHEN C,WANG Y F,SUN A X,et al.Dipping PLMs sauce:bridging structure and text for effectiveknowledge graph completion via conditional soft prompting[C]//Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2023:11489-11503.
[15]LIU X D,HE P C,CHEN W Z,et al.Multi-task deep neural networks for natural language understanding[C]//Proceedings of the 57th Annual Meeting of the Association for ComputationalLinguistics.Stroudsburg:ACL,2019:4487-4496.
[16]OPENAI,ACHIAM J,ADLER S,et al.GPT-4 technical report[J].arXiv:2303.08774,2023.
[17]TOUVRON H,LAVRIL T,IZACARD G,et al.LLaMA:open and efficient foundation language models[J].arXiv:2302.13971,2023.
[18]ZENG A H,LIU X,DU Z X,et al.GLM-130B:an open bilingual pre-trained model[J].arXiv:2210.02414,2022.
[19]ZHAO W X,ZHOU K,LI J Y,et al.A survey of large language models[J].arXiv:2303.18223,2023.
[20]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information ProcessingSystems.2013:2787-2795.
[21]YANY B,HE X.Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the 2015 International Conference on Learning Representations.2015:1412-1420.
[22]SUN Z Q,DENG Z H,NIE J Y,et al.RotatE:knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations.2019:1-18.
[23]DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence,the 30th Innovative Applications of Artificial Intelligence,and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence.Menlo Park:AAAI,2018:1811-1818.
[24]NGUYEN D Q,NGUYEN T D,NEUYEN D Q,et al.A novel embedding model for knowledge base completion based on convolutional neural network[J].arXiv:1712.02121,2017.
[25]NATHANI D,CHAUHAN J,SHARMA C,et al.Learning attention-based embeddings for relation prediction in knowledge graphs[J].arXiv:1906.01195,2019.
[26]DEVLIN J,CHANG M W,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg:ACL,2019:4171-4186.
[27]JU J H,YANY D Q,LIU J P.Commonsense knowledge base completion with relational graph attention network and pre-trained language model[C]//Proceedings of the 31st ACM International Conference on Information and Knowledge Management Association for Computing Machinery.New York:ACM,2022:4104-4108.
[28]SUN W,LI Y F,YAO J F,et al.Combining structure embedding and text semantics for efficient knowledge graph completion[C]//Proceedings of the 35th International Conference on Software Engineering and Knowledge Engineering.2023:317-322.
[29]ZHU Y Q,WANG X H,CHEN J,et al.Llms for knowledge graph construction and reasoning:recent capabilities and future opportunities[J].arXiv:2305.13168,2023.
[30]YAO L,PENG J Z,MAO C S,et al.Exploring large language models for knowledge graph completion[J].arXiv:2308.13916,2023.
[31]WEI Y B,HUANG Q S,ZHANG Y,et al.KICGPT:large language model with knowledge in context for knowledge graph completion[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.Stroudsburg:ACL,2023:8667-8683.
[32]AKRAMI F,SAEEF M S,ZHANG Q,et al.Realistic re-evaluation of knowledge graph completion methods:an experimental study[J].arXiv:2003.08001,2020.
[33]BALAŽEVIC I,ALLEN C,HOSPEDALES T.Tucker:tensor factorization for knowledge graph completion[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the International Joint Conference on Natural Language Processing.2019:5185-5194.
[34]VASHISHTH S,SANYAL S,NITIN N,et al.Compositionbased multi-relational graph convolutional networks[C]//Proceedings of the 8th International Conference on Learning Representations.2020.
[35]ZHU Y L,LIU J T,RAO Z Y,et al.Knowledge Reasoning Model Combining HousE with Attention Mechanism[J].Computer Science,2024,51(S1):147-154.
[36]HU B H,ZHANG J P,CHEN H C.Knowledge Graph Completion Algorithm Based on Generative Adversarial Network and Positiveand Unlabeled Learning[J].Computer Science,2024,51(1):310-315.
[37]KIM B,HONG T,KO Y,et al.Multi-task learning for knowledge graph completion with pre-trained language models[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:1737-1743.
[38]CHEN C,WANG Y,LI B,et al.Knowledge is flat:a seq2seqgenerative framework for various knowledge graph completion[C]//Proceedings of the 29th International Conference on Computational Linguistics.Stroudsburg:ACL,2022:4005-4017.
[39]LIU X Y,WANG Z X,SUN Y,et al.ISA-KGC:integrated semantics-structure analysis in knowledge graph completion[J].IEEE Access,2024,12:57250-57260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!