计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 123-133.doi: 10.11896/jsjkx.240800013
许恒宇1, 陈坤2, 徐琳1,3, 孙明斋4,5, 陆洲1
XU Hengyu1, CHEN Kun2, XU Lin1,3, SUN Mingzhai4,5, LU Zhou1
摘要: 动脉与静脉在RGB视网膜成像中形态高度相似,且其本身结构兼具细微性和复杂性,导致现阶段多数视网膜图像处理所使用的动静脉分割模型难以取得理想效果。为提高动静脉分割的准确性,同时降低训练成本,提出了一种基于SAM(Segment Anything Model)的视网膜分割模型——SAM-Retina。SAM-Retina采用特征融合器-适配型图像编码器-掩码解码器架构,使用同时包含RGB图像以及570 nm和610 nm单波长图像的结构-功能双模态视网膜图像代替原有的单模态(RGB)图像作为输入,利用特征融合器融合这3种图像的特征;通过在视觉转换器中插入Adapter模块并对其加以更新,保留图像编码器在大规模自然图像数据集上的预训练参数;使用静态提示嵌入代替提示编码器,去除原有SAM分割流程中的提示输入过程和提示编码过程。实验阶段将模型在DualModal2019和HRF数据集上进行训练和评估,并与U-Net,CRU-Net和TW-GAN进行对比。结果表明,相较于对比模型,SAM-Retina在各项评估指标上效果更好,尤其是双模态图像的引入,使得在无需扩大模型规模的前提下,有效提升了分割性能。
中图分类号:
[1]CHEN Y X,WEN L,PEI C W,et al.Changes of microvascular diameter in non-proliferative diabetic retinopathy[J].International Eye Science,2021,9(21):1632-1636. [2]MURSCH-EDLMAYR A S,BOLZ M,STROHMAIER C.Vascular aspects in glaucoma:from pathogenesis to therapeutic approaches[J].International Journal of Molecular Sciences,2021,22(9):4662. [3]CHEUNG C Y,MOK V,FOSTER P J,et al.Retinal imaging in Alzheimer's disease[J].Journal of Neurology,Neurosurgery & Psychiatry,2021,92(9):983-994. [4]RIM T H,TEO A W J,YANG H H S,et al.Retinal vascular signs and cerebrovascular diseases[J].Journal of Neuro-Ophthalmology,2020,40(1):44-59. [5]IKRAM M K,DE JONG F J,VINGERLING J R,et al.Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam Study[J].Investigative Ophthalmology & Visual Science,2004,45(7):2129-2134. [6]DASHTBOZORG B,MENDONÇA A M,CAMPILHO A.Anautomatic method for the estimation of arteriolar-to-venular ratio in retinal images[C]//Proceedings of the 26th IEEE International Symposium on Computer-based Medical Systems.IEEE,2013:512-513. [7]CIURICĂ S,LOPEZ-SUBLET M,LOEYS B L,et al.Arterialtortuosity:novel implications for an old phenotype[J].Hypertension,2019,73(5):951-960. [8]TELISCHAK N A,YEDAVALLI V,MASSOUD T F.Tortuosi-ty of superior cerebral veins:comparative magnetic resonance imaging morphometrics in normal subjects and arteriovenous malformation patients[J].Clinical Anatomy,2021,34(3):326-332. [9]YU S,LAKSHMINARAYANAN V.Fractal dimension and reti-nal pathology:a meta-analysis[J].Applied Sciences,2021,11(5):2376. [10]MILANI P,MONTESANO G,ROSSETTI L,et al.Vessel density,retinal thickness,and choriocapillaris vascular flow in myopic eyes on OCT angiography[J].Graefe's Archive for Clinical and Experimental Ophthalmology,2018,256:1419-1427. [11]DASHTBOZORG B,MENDONCA A M,CAMPILHO A.AnAutomatic Graph-Based Approach for Artery/Vein Classification in Retinal Images[J].IEEE Transactions on Image Proces-sing,2014,23(3):1073-1083. [12]ZHAO Y,XIE J,ZHANG H,et al.Retinal vascular network topology reconstruction and artery/vein classification via dominant set clustering[J].IEEE Transactions on Medical Imaging,2019,39(2):341-356. [13]WELIKALA R A,FOSTER P J,WHINCUP P H,et al.Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort[J].Computers in Biology and Medicine,2017,90:23-32. [14]REMESEIRO B,MENDONÇA A M,CAMPILHO A.Automa-tic classification of retinal blood vessels based on multilevel thresholding and graph propagation[J].The Visual Computer,2021,37:1247-1261. [16]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18.Springer,2015:234-241. [17]HEMELINGS R,ELEN B,STALMANS I,et al.Artery-veinsegmentation in fundus images using a fully convolutional network[J].Computerized Medical Imaging and Graphics,2019,76:101636. [18]KARLSSON R A,HARDARSON S H.Artery vein classification in fundus images using serially connected U-Nets[J].Computer Methods and Programs in Biomedicine,2022,216:106650. [19]CHEN W,YU S,MA K,et al.TW-GAN:Topology and width aware GAN for retinal artery/vein classification[J].Medical Image Analysis,2022,77:102340. [20]ZHANG J,YANG K,SHEN Z,et al.End-to-End AutomaticClassification of Retinal Vessel Based on Generative Adversarial Networks with Improved U-Net[J].Diagnostics,2023,13(6):1148. [21]WALD T,ROY S,KOEHLER G,et al.SAM.MD:Zero-shotmedical image segmentation capabilities of the Segment Anything Model[C]//Medical Imaging with Deep Learning.2023. [22]MA J,HE Y,LI F,et al.Segment Anything in Medical Images[J].arXiv:2304.12306,2023. [23]MAZUROWSKI M A,DONG H,GU H,et al.Segment any-thing model for medical image analysis:an experimental study[J].Medical Image Analysis,2023,89:102918. [24]DENG R,CUI C,LIU Q,et al.Segment anything model(sam) for digital pathology:Assess zero-shot segmentation on whole slide imaging[J].arXiv:2304.04155,2023. [25]KIRILLOV A,MINTUN E,RAVI N,et al.Segment Anything[C]//2023 IEEE/CVF International Conference on Computer Vision.2023. [26]CHEN H Y.Calibration of Retinal Oximetry Devices by Fun-dus-simulating Phantoms[D].Hefei:University of Science and Technology of China,2019. [27]TEAM G,ANIL R,BORGEAUD S,et al.Gemini:a family ofhighly capable multimodal models[J].arXiv:2312.11805,2023. [28]ROMBACH R,BLATTMANN A,LORENZ D,et al.High-reso-lution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10684-10695. [29]RAMESH A,PAVLOV M,GOH G,et al.Zero-shot text-to-image generation[C]//International Conference on Machine Learning.PMLR,2021:8821-8831. [30]WU J,ZHANG Y,FU R,et al.Medical SAM Adapter:Adapting Segment Anything Model for Medical Image Segmentation[J].arXiv:2306.12620,2023. [31]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [32]HU E J,SHEN Y,WALLIS P,et al.LORA:Low-rank adaptation of large language models[J].arXiv:2106.09685,2021. [33]ZHANG S,ZHENG R,LUO Y,et al.Simultaneous Arterioleand Venule Segmentation of Dual-Modal Fundus Images Using a Multi-Task Cascade Network[J].IEEE Access,2019,7:57561-57573. |
|