计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800053-6.doi: 10.11896/jsjkx.240800053

• 大数据&数据科学 • 上一篇    下一篇

基于小样本对比学习的甲型流感抗原性预测

李江辉, 丁海燕, 李维华   

  1. 云南大学信息学院 昆明 650500
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 丁海燕(teidhy@163.com)
  • 作者简介:(ljh_8102@163.com)

Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning

LI Jianghui, DING Haiyan, LI Weihua   

  1. School of Information Science and Engineering,Yunnan University,Kunming 650500,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:LI Jianghui,born in 1999,postgradu ate.His main research interests include deep learning and bioinformatic.
    DING Haiyan,master,associate professor.Her main research interest is intelligent data processing.

摘要: 流感病毒在选择压力下发生一系列遗传突变,导致抗原变异,引发免疫逃逸和适应性增强,从而降低现有疫苗和药物的有效性。及时识别病毒株间的抗原差异,对流感病毒的防控及疫苗开发至关重要。传统血清学方法往往是低通量的,获得数据样本有限,导致现有基于深度学习的抗原性预测模型难以有效地从血凝素蛋白序列提取抗原特征。因此,提出了一种基于卷积神经网络和对比学习增强的抗原性预测方法,通过对比原始菌株对基因序列及抗原性标签,直接提取抗原表征差异,并实现抗原差异的可视化。在A/H1N1,A/H3N2和A/H5N1 3个亚型的数据集上进行实验,结果表明,所提模型提升了抗原性预测的准确度和泛化能力,为流感病毒的监测和疫苗开发提供了支持。

关键词: 甲型流感, 抗原性预测, 对比学习, 卷积注意力

Abstract: Influenza viruses undergo a series of genetic mutations under selective pressure,leading to antigenic variation,immune evasion,and enhanced adaptability,which reduces the effectiveness of existing vaccines and antiviral drugs. Timely identification of antigenic differences between viral strains is crucial to the prevention and control of influenza viruses and the development of vaccines. Due to the low throughput of traditional serological methods,the available data samples are often limited,making it difficult for existing deep learning-based antigenicity prediction models to effectively extract antigenic features from hemagglutinin protein sequences. Therefore,this paper proposes an antigenicity prediction method enhanced by convolutional neural networks and contrastive learning. By comparing the genetic sequences and antigenicity labels of original strains,the model directly extracts antigenic representation differences and visualizes these antigenic differences. Experiments are conducted on datasets of three subtypes:A/H1N1,A/H3N2,and A/H5N1. The results show that the proposed model improves the accuracy and generalization ability of antigenicity prediction,providing support for the monitoring of influenza viruses and vaccine development.

Key words: Influenza A, Antigenicity prediction, Contrastive learning, Convolutional attention

中图分类号: 

  • TP391
[1]COX N J,SUBBARAOK. Global epidemiology of influenza:past and present[J].Annual Review of Medicine,2000,51(1):407-421.
[2]DASZAK P,CUNNINGHAM A A,HYATTA D.Emerging infectious diseases of wildlife-threats to biodiversity and human health[J].Science,2000,287(5452):443-449.
[3]STEVENS J,BLIXT O,TUMPEY TM,et al.Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus[J].Science,2006,312(5772):404-410.
[4]LEE M S,CHEN J S E.Predicting antigenic variants of influen-za A/H3N2 viruses[J].Emerging Infectious Diseases,2004,10(8):1385.
[5]CHEN R,HOLMES E C.Avian influenza virus exhibits rapid evolutionary dynamics[J].Molecular Biology and Evolution,2006,23(12):2336-2341.
[6]SMITH D J,LAPEDES A S,DE JONGJ C,et al.Mapping the antigenic and genetic evolution of influenza virus[J].Science,2004,305(5682):371-376.
[7]QIU T,QIU J,YANG Y,et al.A benchmark dataset of protein antigens for antigenicity measurement[J].Scientific Data,2020,7(1):212.
[8]YANG Z Y,WEI C J,KONG W P,et al.Immunization by avian H5 influenza hemagglutinin mutants with altered receptor bin-ding specificity[J].Science,2007,317(5839):825-828.
[9]LEES W D,MOSS D S,SHEPHERD A J.A computationalanalysis of the antigenic properties of haemagglutinin in influenza A H3N2[J].Bioinformatics,2010,26(11):1403-1408.
[10]PENG Y,WANG D,WANG J,et al.A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures[J].Scientific Reports,2017,7:42051.
[11]YAO Y,LI X,LIAO B,et al.Predicting influenza antigenicityfrom Hemagglutintin sequence data based on a joint random fo-rest method[J].Scientific Reports,2017,7(1):1545.
[12]KOLINSKI A,POKAROWSKA M,KANEHISA M,et al.AAindex:amino acid index database,progress report 2008[J].Nucleic Acids Research,2007,36(suppl_1):D202-D205.
[13]ASGARI E,MOFRAD M R K.Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics[J].PLoS One,2015,10(11):e0141287.
[14]YIN R,THWIN N N,ZHUANG P,et al.IAV-CNN:a 2D con-volutional neural network model to predict antigenic variants of influenza A virus[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,19(6):3497-3506.
[15]LI C,LI W H,WANG Y H,et al.Gated Two-tower Transformerbased Model for Predicting Antigenicity of Influenza H1N1[J].Computer Science,2022,49(S2):211000209-6.
[16]YIN R,YE B,BIAN J.CLCAP:Contrastive learning improvesantigenicity prediction for influenza A virus using convolutional neural networks[J].Methods,2023,220:21-28.
[17]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19.
[18]REN Y,BAI J,ZHANG J.Label contrastive coding based graph neural network for graph classification[C]//Database Systems for Advanced Applications:26th International Conference(DASFAA 2021).Springer,2021:123-140.
[19]HE K,FAN H,WU Y,et al.Momentum contrast for unsuper-vised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9729-9738.
[20]LIAO Y C,LEE M S,KO C Y,et al.Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus[J].Bioinformatics,2008,24(4):505-512.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!