计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800053-6.doi: 10.11896/jsjkx.240800053
李江辉, 丁海燕, 李维华
LI Jianghui, DING Haiyan, LI Weihua
摘要: 流感病毒在选择压力下发生一系列遗传突变,导致抗原变异,引发免疫逃逸和适应性增强,从而降低现有疫苗和药物的有效性。及时识别病毒株间的抗原差异,对流感病毒的防控及疫苗开发至关重要。传统血清学方法往往是低通量的,获得数据样本有限,导致现有基于深度学习的抗原性预测模型难以有效地从血凝素蛋白序列提取抗原特征。因此,提出了一种基于卷积神经网络和对比学习增强的抗原性预测方法,通过对比原始菌株对基因序列及抗原性标签,直接提取抗原表征差异,并实现抗原差异的可视化。在A/H1N1,A/H3N2和A/H5N1 3个亚型的数据集上进行实验,结果表明,所提模型提升了抗原性预测的准确度和泛化能力,为流感病毒的监测和疫苗开发提供了支持。
中图分类号:
[1]COX N J,SUBBARAOK. Global epidemiology of influenza:past and present[J].Annual Review of Medicine,2000,51(1):407-421. [2]DASZAK P,CUNNINGHAM A A,HYATTA D.Emerging infectious diseases of wildlife-threats to biodiversity and human health[J].Science,2000,287(5452):443-449. [3]STEVENS J,BLIXT O,TUMPEY TM,et al.Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus[J].Science,2006,312(5772):404-410. [4]LEE M S,CHEN J S E.Predicting antigenic variants of influen-za A/H3N2 viruses[J].Emerging Infectious Diseases,2004,10(8):1385. [5]CHEN R,HOLMES E C.Avian influenza virus exhibits rapid evolutionary dynamics[J].Molecular Biology and Evolution,2006,23(12):2336-2341. [6]SMITH D J,LAPEDES A S,DE JONGJ C,et al.Mapping the antigenic and genetic evolution of influenza virus[J].Science,2004,305(5682):371-376. [7]QIU T,QIU J,YANG Y,et al.A benchmark dataset of protein antigens for antigenicity measurement[J].Scientific Data,2020,7(1):212. [8]YANG Z Y,WEI C J,KONG W P,et al.Immunization by avian H5 influenza hemagglutinin mutants with altered receptor bin-ding specificity[J].Science,2007,317(5839):825-828. [9]LEES W D,MOSS D S,SHEPHERD A J.A computationalanalysis of the antigenic properties of haemagglutinin in influenza A H3N2[J].Bioinformatics,2010,26(11):1403-1408. [10]PENG Y,WANG D,WANG J,et al.A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures[J].Scientific Reports,2017,7:42051. [11]YAO Y,LI X,LIAO B,et al.Predicting influenza antigenicityfrom Hemagglutintin sequence data based on a joint random fo-rest method[J].Scientific Reports,2017,7(1):1545. [12]KOLINSKI A,POKAROWSKA M,KANEHISA M,et al.AAindex:amino acid index database,progress report 2008[J].Nucleic Acids Research,2007,36(suppl_1):D202-D205. [13]ASGARI E,MOFRAD M R K.Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics[J].PLoS One,2015,10(11):e0141287. [14]YIN R,THWIN N N,ZHUANG P,et al.IAV-CNN:a 2D con-volutional neural network model to predict antigenic variants of influenza A virus[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,19(6):3497-3506. [15]LI C,LI W H,WANG Y H,et al.Gated Two-tower Transformerbased Model for Predicting Antigenicity of Influenza H1N1[J].Computer Science,2022,49(S2):211000209-6. [16]YIN R,YE B,BIAN J.CLCAP:Contrastive learning improvesantigenicity prediction for influenza A virus using convolutional neural networks[J].Methods,2023,220:21-28. [17]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [18]REN Y,BAI J,ZHANG J.Label contrastive coding based graph neural network for graph classification[C]//Database Systems for Advanced Applications:26th International Conference(DASFAA 2021).Springer,2021:123-140. [19]HE K,FAN H,WU Y,et al.Momentum contrast for unsuper-vised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9729-9738. [20]LIAO Y C,LEE M S,KO C Y,et al.Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus[J].Bioinformatics,2008,24(4):505-512. |
|