计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 168-175.doi: 10.11896/jsjkx.240800057
郑涤尘1, 何继开1, 刘艺2, 高帆1, 张登银2
ZHENG Dichen1, HE Jikai1, LIU Yi2, GAO Fan1, ZHANG Dengyin2
摘要: 现实环境中图像通常在次优照明条件下拍摄,导致亮度不足、观感较差。现有低照度图像增强方法往往结构复杂,侧重于改善暗光区域的可视度,但可能过度增强图像的明亮区域,放大隐藏的噪声。多数基于Retinex理论的方法存在噪点过多、细节损失和颜色失真等问题,影响增强结果的视觉质量。为了解决该问题,提出了一种基于Retinex理论的低照度图像自适应增强算法,旨在有效提升图像亮度的同时真实、自然地还原图像。首先,低照度图像经过投影模块去除不适合Retinex理论分解的噪声;其次,分解网络将图像分解为照度分量和反射分量;最后,照度分量经过自适应迭代曲线进行调整,与反射分量相乘得到增强图像。实验结果表明,相比于其他主流算法,所提算法在客观评价指标特别是PSNR和SSIM上优势明显:在LOL数据集上分别达到19.98 dB和0.76,较次优算法提高4.9%和4.1%;在LSRW数据集上分别达到18.94 dB和0.58,较次优算法提高1.5%和7.4%。在有参考数据集和无参考数据集上,所提算法得到的增强图像的亮度均有显著提升,色彩真实自然,主观视觉效果更好。
中图分类号:
[1]WU X Q,ZHOU W J,ZUO C L,et al.Salient object detection method based on multi-scale visual perception feature fusion[J].Computer Science,2024,51(5):143-150. [2]LIU Y T,LI P,SUN Y Y,et al.Image recognition with deep dynamic joint adaptation networks[J].Computer Science,2021,48(6):131-137. [3]ZHANG F C,ZHONG G Q,MAO Y X.Neural architecturesearch for light-weight medical image segmentation network[J].Computer Science,2022,49(10):183-190. [4]IBRAHIM H,KONG N S P.Brightness preserving dynamic histogram equalization for image contrast enhancement [J].IEEE Transactions on Consumer Electronics,2007,53(4):1752-1758. [5]JOHN J M.Lightness and retinex theory [J].Journal of the Optical Society of America,1970,61(1):1-11. [6]LORE K G,AKINTAYO A,SARKAR S.LLNet:a deep autoencoder approach to natural low-light image enhancement [J].Pattern Recognition,2017,61:650-662. [7]WEI C,WANG W,YANG W,et al.Deep retinex decomposition for low-light enhancement [J].arXiv:1808.04560,2018. [8]ZHANG Y,ZHANG J,GUO X.Kindling the darkness:A practical low-light image enhancer [C]//Proceedings of the 27th ACM International Conference on Multimedia.2019:1632-1640. [9]ZHANG Y,GUO X,MA J,et al.Beyond brightening low-light images [J].International Journal of Computer Vision,2021,129(4):1013-1037. [10]LIU R,MA L,ZHANG J,et al.Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10561-10570. [11]ZHAO Z,XIONG B,WANG L,et al.RetinexDIP:A UnifiedDeep Framework for Low-Light Image Enhancement [J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(3):1076-1088. [12]HAI J,XUAN Z,YANG R,et al.R2RNet:Low-light image enhancement via Real-low to Real-normal Network [J].Journal of Visual Communication and Image Representation,2023,90:1037-1048. [13]ZHANG L,ZHANG L,LIU X,et al.Zero-shot restoration of back-lit images using deep internal learning [C]//Proceedings of the 27th ACM International Conference on Multimedia.2019:1623-1631. [14]GUO C,LI C,GUO J,et al.Zero-reference deep curve estimation for low-light image enhancement [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1780-1789. [15]ZHU A,ZHANG L,SHEN Y,et al.Zero-Shot Restoration of Underexposed Images via Robust Retinex Decomposition [C]//Proceedings of the IEEE/CVF International Conference on Multimedia and Expo.2020:1-6. [16]ZHENG S,GUPTA G.Semantic-guided zero-shot learning forlowlight image/video enhancement [C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:581-590. [17]WEN J,WU C,ZHANG T,et al.Self-Reference Deep Adaptive Curve Estimation for Low-Light Image Enhancement [J].ar-Xiv:2308.08197,2023. [18]JIANG Y,GONG X,LIU D,et al.Enlightengan:Deep light enhancement without paired supervision [J].IEEE Transactions on Image Processing,2021,30:2340-2349. [19]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional networks for biomedical image segmentation [C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention.2015:234-241. [20]MA L,MA T,LIU R,et al.Toward fast,flexible,and robustlow-light image enhancement [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5637-5646. [21]CUI Z,LI K,GU L,et al.You Only Need 90K Parameters toAdapt Light:a Light Weight Transformer for Image Enhancement and Exposure Correction [J].arXiv:2205.14871,2022. [22]SHAKIBANIA H,RAOUFI S,KHOTANLOU H.CDAN:Convolutional Dense Attention-guided Network for Low-light Image Enhancement [J].arXiv:2308.12902,2023. [23]JIANG H,LUO A,LIU X H,et al.LightenDiffusion:Unsupervised Low-Light Image Enhancement with Latent-Retinex Diffusion Models [J].arXiv:2407.08939,2024. [24]CHOBOLA T,LIU Y,ZHANG H,et al.Fast Context-BasedLow-Light Image Enhancement via Neural Implicit Representations [J].arXiv:2407.12511,2024. [25]CHEN Y,ZHU G,WANG X,et al.FMR-Net:a fast multi-scale residual network for low-light image enhancement [J].Multimedia Systems,2024,30(2):73. [26]SHI Y F,ZHAO B T.Low-light Image Enhancement Algorithm Based on Retinex Theory [J].Journal of Chongqing Technology and Business University(Natural Science Edition),2023,40(6):61-67. [27]FU Z,YANG Y,TU X,et al.Learning a Simple Low-light Image Enhancer from Paired Low-light Instances [C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:22252-22261. [28]LI J,FENG X,HUA Z.Low-Light Image Enhancement via Progressive-Recursive Network [J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(11):4227-4240. [29]CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions [C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2017:1800-1807. [30]CHARBONNIER P,BLANC-FERAUD L,AUBERT G,et al.Two deterministic half-quadratic regularization algorithms for computed imaging[C]//Proceedings of 1st International Confe-rence on Image Processing.1994:168-172. [31]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity [J].IEEE Transactions on Image Processing,2004,13(4):600-612. [32]LIU C,WU F,WANG X.EFINet:Restoration for Low-Light Images via Enhancement-Fusion Iterative Network [J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(12):8486-8499. [33]ZHANG Y,DI X,WU J,et al.Simplifying Low-Light Image Enhancement Networks with Relative Loss Functions [J].arXiv:2304.02978,2023. [34]WANG S,ZHENG J,HU H,et al.Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images [J].IEEE Transactions on Image Processing,2013,22(9):3538-3548. [35]CAI J,GU S,ZHANG L.Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images [J].IEEE Tran-sactions on Image Processing,2018,27(4):2049-2062. [36]LEE C,LEE C,KIM C S.Contrast enhancement based on layered difference representation of 2D histograms [J].IEEE Transactions on Image Processing,2013,22(12):5372-5384. [37]GUO X,LI Y,LING H.LIME:Low-light image enhancement via illumination map estimation [J].IEEE Transactions on Image Processing,2016,26(2):982-993. [38]MA K,ZENG K,WANG Z.Perceptual quality assessment for multi-exposure image fusion [J].IEEE Transactions on Image Processing,2015,24(11):3345-3356. [39]WANG S,ZHENG J,HU H M,et al.Naturalness preserved enhancement algorithm for non-uniform illumination images [J].IEEE Transactions on Image Processing,2013,22(9):3538-3548. [40]MITTAL A,SOUNDARARAJAN R,BONIKA C.Making a“completely blind” image quality analyzer[J].IEEE Signal Processing Letters,2012,20(3):209-212. [41]HUYNH-THU Q,GHANBARI M.Scope of validity of PSNR in image/video quality assessment [J].Electronics Letters,2008,44(13):800-801. [42]ZHANG R,ISOLA P,EFROS A,et al.The Unreasonable Effectiveness of Deep Features as a Perceptual Metric [J].arXiv:1801.03924,2018. |
|