计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 349-358.doi: 10.11896/jsjkx.240800067
胡海峰1, 朱漪雯2, 赵海涛3
HU Haifeng1, ZHU Yiwen2, ZHAO Haitao3
摘要: 端到端时延作为网络切片重要的性能指标,在切片部署中因受到网络拓扑、流量模型和调度策略等影响,很难通过建模方式进行准确预测。为了解决上述问题,提出基于异构图神经网络的网络切片时延预测(Heterogeneous Graph Neural Network-Based Network Slicing Latency Prediction,HGNN)算法。首先,构建了切片-队列-链路的分层异构图,实现了切片的分层特征表达。然后,针对分层图中切片、队列和链路3种类型节点的属性特点,使用异构图神经网络挖掘拓扑动态变化、边特征信息和长依赖关系等和切片相关的底层特征,即分别选用GraphSAGE图神经网络、EGRET图神经网络和门控循环单元GRU来提取切片、队列和链路特征。同时,利用基于异构图神经网络的深度回归实现了网络切片特征表达的更新迭代和切片时延的准确预测。最后,通过构建基于OMNeT++的不同拓扑结构、流量模型和调度策略的切片数据库,验证了HGNN在实际网络场景下对切片端到端时延预测的有效性,并通过对比多种基于图深度学习的切片时延预测算法,进一步验证了HGNN在时延预测准确度和泛化性方面的优越性。
中图分类号:
[1]WANG R,ZHANG K L.Survey of Network slicing[J].Journal of Nanjing University of Posts and Telecommunication(Natural Science Edition),2018,38(5):19-27. [2]HEGDE P,MEENA S M.A survey on 5G Network Slicing-Epitome and opportunities for a novice[C]//2021 12th International Conference on Computing Communication and Networking Technologies(ICCCNT).2021:1-5. [3]JIMÉNEZ M B,FERNÁNDEZ D,RIVADENEIRA J E,et al.A Survey of the Main Security Issues and Solutions for the SDN Architecture[J].IEEE Access,2021:122016-122038. [4]ZOURE M,AHMED T,RÉVEILLÈRE L.Network ServicesAnomalies in NFV:Survey,Taxonomy,and Verification Me-thods[J].IEEE Transactions on Network and Service Mana-gement,2022,19(2):1567-1584. [5]WANG S Y,YUEN C,NI W,et al.Multiagent Deep Reinforcement Learning for Cost- and Delay-Sensitive Virtual Network Function Placement and Routing[J].IEEE Transactions on Communications,2022,70(8):5208-5224. [6]SATTER D,MATRAWY A.Optimal Slice Allocation in 5GCore Networks[J].IEEE Networking Letters,2019,1(2):48-51. [7]WANG H Z,WU Y L,MIN G Y,et al.A Graph Neural Network-based Digital Twin for Network Slicing Management[J].IEEE Transactions on Industrial Informatics,2022,18(2):1367-1376. [8]WU Y W,ZHANG K,ZHANG Y.Digital Twin Networks:ASurvey[J].IEEE Internet of Things Journal,2021,8(18):13789-13804. [9]HAMILTON W L,YING R,LESKOVEC J.Inductive representation learning on largegraphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS’17).2017:1025-1035. [10]MAHBUB S,BAYZID M S.EGRET:edge aggregated graph attention networks and transfer learning improve protein-protein interaction site prediction[J].Briefings in Bioinformatics,2022,23(2):bbab578. [11]ANGGONO G,MOORS T.A Flow-Level Extension toOMNeT++ for Long Simulations of Large Networks[J].IEEE Communications Letters,2017,21(3):496-499. [12]GUO S S,LU B B,WEN M W,et al.Customized 5G and Beyond Private Networks with Integrated URLLC,eMBB,mMTC,and Positioning for Industrial Verticals[J].IEEE Communications Standards Magazine,2022,6(1):52-57. [13]WU Z X,YOU Y Z,LIU C C,et al.Machine Learning Based 5G Network Slicing Management and Classification[C]//2024 International Conference on Artificial Intelligence in Information and Communication(ICAIIC).Osaka,2024:371-375. [14]MOVVA N D,ISHIGAKI G.Neural Network-based BlockingPrediction for Dynamic Network Slicing[C]//2024 33rd International Conference on Computer Communications and Networks(ICCCN).Kailua-Kona,HI,USA,2024:1-6. [15]LI H,KONG Z X,CHEN Y W,et al.Slice-Based Service Function Chain Embedding for End-to-End Network Slice Deploy-ment[J].IEEE Transactions on Network and Service Management,2023,20(3):3652-3672. [16]DAI M,SUN G,YU H F,et al.Maximize the Long-Term Average Revenue of Network Slice Provider via Admission Control Among Heterogeneous Slices[J].IEEE/ACM Transactions on Networking,2024,32(1):745-760. [17]DONG J Y,GAO S T,LU H J,et al.Joint Optimization of Resource Allocation and Tasks Scheduling in Network Slicing Enabled Internet of Vehicles[C]//IEEE 8th International Confe-rence on Computer and Communications(ICCC).2022:552-556. [18]GONG Y,WEI Y F,FENG Z Y,et al.Resource Allocation for Integrated Sensing and Communication in Digital Twin Enabled Internet of Vehicles[J].IEEE Transactions on Vehicular Technology,2023,72(4):4510-4524. [19]TANG L,DU Y C,LIU Q H,et al.Digital-Twin-Assisted Resource Allocation for Network Slicing in Industry 4.0 and Beyond Using Distributed Deep Reinforcement Learning[J].IEEE Internet of Things Journal,2023,10(19):16989-17006. [20]CHIANG Y,HSU C H,CHEN G H,et al.Deep Q-Learning-Based Dynamic Network Slicing and Task Offloading in Edge Network[J].IEEE Transactions on Network and Service Mana-gement,2023,20(1):369-384. [21]XIONG Z P,WANG D Y,LIU X H,et al.Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism[J].Journal of Medicinal Chemistry,2020,63(16):8749-8760. [22]HUANG Z H,WANG Z C,CHEN S.Sub-6GHz Assisted mmWave Hybrid Beamforming with Heterogeneous Graph Neural Network[J].IEEE Transactions on Communications,2024,72(11):6917-6928. [23]MARWANI M,KADDOUM G.Graph Neural Networks Approach for Joint Wireless Power Control and Spectrum Allocation[J].IEEE Transactions on Machine Learning in Communications and Networking,2024,2:717-732. [24]TAN Y W,LIU J J,WANG J D.5G End-to-End Slice Embedding Based on Heterogeneous Graph Neural Network and Reinforcement Learning[J].IEEE Transactions on Cognitive Communications and Networking,2024,10(3):1119-1131. [25]YANG S,LI F,TRAJANOVSK S,et al.Recent Advances of Resource Allocation in Network Function Virtualization[J].IEEE Transactions on Parallel and Distributed Systems,2021,32(2):295-314. [26]CHEN W K,LIU Y F,DOMENICO A D,et al,Optimal Network Slicing for Service-Oriented Networks With Flexible Routing and Guaranteed E2E Latency[J] IEEE Transactions on Network and Service Management,2021,18(4):4337-4352. [27]ZHANG X Q,WANG T,JIANG R H,et al.Multi-AttentionConvolutional Neural Network for Video Deblurring[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(4):1986-1997. |
|