计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 376-387.doi: 10.11896/jsjkx.240800107

• 信息安全 • 上一篇    下一篇

基于梯度引导的社团隐匿扰动子结构优化方法

俞山青, 宋亦聃, 周金涛, 周梦, 李家祥, 汪泽钰, 宣琦   

  1. 浙江工业大学网络空间安全研究院 杭州 310023
    杭州市滨江区浙工大人工智能创新研究院 杭州 310056
  • 收稿日期:2024-08-21 修回日期:2024-11-11 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 汪泽钰(vencent_wang@outlook.com)
  • 作者简介:(yushanqing@zjut.edu.cn)
  • 基金资助:
    国家自然科学基金(62103374,U21B2001);浙江省重点研发计划(2022C01018,2024C01025)

Gradient-guided Pertuerbed Substructure Optimization for Community Hiding

YU Shanqing, SONG Yidan, ZHOU Jintao, ZHOU Meng, LI Jiaxiang, WANG Zeyu, XUAN Qi   

  1. Institute of Cyberspace Security,Zhejiang University of Technology,Hangzhou 310023,China
    Binjiang Institute of Artificial Intelligence,Zhejiang University of Technology,Hangzhou 310056,China
  • Received:2024-08-21 Revised:2024-11-11 Online:2025-09-15 Published:2025-09-11
  • About author:YU Shanqing,born in 1983,Ph.D,associate professor,Ph.D supervisor,is a member of CCF(No.C3006M).Her main research interests include intelligent computation and data mining.
    WANG Zeyu,born in 1999,postgra-duate.His main research interests inclu-de data mining and network security.
  • Supported by:
    National Natural Science Foundation of China(62103374,U21B2001) and Key R&D Program of Zhejiang Province(2022C01018,2024C01025).

摘要: 社团检测是一种用于揭示网络聚集行为的技术,能够精准识别网络中的社团结构,帮助更好地理解复杂网络的内部组织和功能。然而,随着社团检测算法的快速发展,其中信息泄露和过度挖掘等诸多隐私问题也备受关注。因此,社团隐匿算法被广泛研究,它通过构建扰动子结构来模糊网络中的社团结构,从而有效地降低社团检测算法的识别能力,实现隐私保护。在现有的扰动子结构优化方法中,基于遗传算法的方法表现较为突出,但这些方法在搜索解过程中缺少方向性指导,因此在构建扰动子结构的效果和效率上仍有提升空间。通过将梯度引导信息引入遗传算法搜索,可以优化扰动子结构的构建过程,从而提高社团隐匿的效果和效率。实验结果表明,在社团隐匿问题中加入梯度引导信息的遗传算法,在搜索扰动子结构方面显著优于其他基线方法,证明了其有效性。

关键词: 社团检测, 社团隐匿, 梯度优化, 进化计算, 扰动子结构

Abstract: Community detection is a technique used to reveal network clustering behaviors,capable of accurately identifying the community structure within a network,thus helping to better understand the internal organization and functions of complex networks.However,with the rapid development of these algorithms,concerns have arisen regarding issues such as information leakage and privacy invasion.In response,community hiding algorithms have been widely studied,which reduce the effectiveness of community detection algorithm and realize privacy protection by constructing perturbed substructure to blur the community structure in the network.Among the current methods for optimizing perturbation substructures,genetic algorithm-based approaches performs better.However,these methods often lack guidance directional in the search for solutions,leaving room for improvement in both the effectiveness and efficiency of constructing perturbation substructures.By incorporating gradient-guided information into the genetic algorithm search,the construction process of perturbation substructures can be optimized,enhancing the effectiveness and efficiency of community hiding.Experimental results demonstrate that integrating gradient-guided information into genetic algorithm search for perturbation substructures significantly outperforms other baseline methods for community hiding,proving its effectiveness.

Key words: Community detection, Community hiding, Gradient optimization, Evolutionary algorithm, Perturbed substructure

中图分类号: 

  • TP302
[1]XUAN Q,WANG J,ZHAO M,et al.Subgraph Networks With Application to Structural Feature Space Expansion[J].IEEE Transactions on Knowledge and Data Engineering,2021,33(6):2776-2789.
[2]CHEN D Y,ZHANG J,LYU Y Q,et al.Single-Node Injection Label Specificity Attack on Graph Neural Networks Via Reinforcement Learning[J].IEEE Transactions on Computational Social Systems,2024,11(5):6135-6150.
[3]XUAN Q,WANG Z Y,WANG J H,et al.Null Model-BasedData Augmentation for Graph Classification[J].IEEE Transactions on Network Science and Engineering,2024,11(2):1821-1833.
[4]ZHOU J J,CHEN Z,DU M,et al.RobustECD:Enhancement of Network Structure for Robust Community Detection[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(1):842-856.
[5]NEWMAN M E J.Modularity and Community Structure in Net-works[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(23):8577-8582.
[6]NEWMAN M E J.Detecting Community Structure in Networks[J].The European physical journal B,2004,38:321-330.
[7]YANG J,MCAULEY J,LESKOVEC J.Community Detectionin Networks with Node Attributes[C]//2013 IEEE 13th International Conference on Data Mining.IEEE,2013:1151-1156.
[8]KROGAN N J,CAGNEY G,YU H,et al.Global Landscape of Protein Complexes in the Yeast Saccharomyces Cerevisiae[J].Nature,2006,440(7084):637-643.
[9]FIONDA V,PALOPOLI L,PANNI S,et al.Protein-Protein Interaction Network Querying by a “Focus and Zoom” Approach[C]//Bioinformatics Research and Development.2008:331-346.
[10]NAGARAJA S.The Impact of Unlinkability on AdversarialCommunity Detection:Effects and Countermeasures[C]//Proceedings of the 10th International Conference on Privacy Enhancing Technologies.2010:253-272.
[11]WANIEK M,MICHALAK T P,WOOLDRIDGE M J,et al.Hiding Individuals and Communities in a Social Network[J].Nature Human Behaviour,2018,2(2):139-147.
[12]YANG H P,CHEN L,FAN C,et al.LSHA:A Local Structure-Based Community Detection Attack Heuristic Approach.[J].IEEE Transactions on Computational Social Systems,2024,11(2):2966-2978.
[13]YU S Q,LI J X,FANG X,et al.GA-Based Multipopulation Synergistic Gene Screening Strategy on Critical Nodes Detection[J].IEEE Transactions on Computational Social Systems,2024,11(3):3839-3850.
[14]CHEN J Y,CHEN L,CHEN Y,et al.GA-based Q-attackon Community Detection[J].IEEE Transactions on Computational Social Systems,2019,6(3):491-503.
[15]LIU D,CHANG Z,YANG G,et al.Hiding ourselves from community detection through genetic algorithms[J].Information Sciences,2022,614:123-137.
[16]ZHAO J,WANG Z,CAO J D,et al.A Self-Adaptive Evolutionary Deception Framework for Community Structure[J].IEEE Transactions on Computational Social Systems,2023,53(8):4954-4967.
[17]CHANG Z C,LIANG J,MA S H,et al.Community Hiding:Completely Escape from Community Detection[J].Information Sciences,2024,672:120665.
[18]CHEN J Y,WU Y,XU X,et al.Fast Gradient Attack on Network Embedding.[J].arXiv:1809.02797,2018.
[19]CHEN J Y,SHI Z,WU Y,et al.Link Prediction Adversarial Attack.[J].arXiv:1810.01110,2018.
[20]CHUNAEV P.Community detection in node-attributed socialnetworks:A survey[J].Computer Science Review,2020,37:100286.
[21]MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability.1967:281-297.
[22]SHI D Y,SHANG F,CHEN B S,et al.LocalDominance Unveils Clusters in Networks[J].Communications Physics,2024,7(1):1-13.
[23]LIU X Y,ZHANG M Y,ZHANG X Q,et al.Semi-supervised community detection method based on generative adversarial networks[J].Journal of King Saud University-Computer and Information Sciences,2024,36(3):102008.
[24]BLONDEL V D,GUILLAUME J L,LAMBIOTTE R,et al.Fast unfolding of communities in large networks[J].Journal of Statistical Mechanics:Theory and Experiment,2008,2008(10):P10008.
[25]NEWMAN M E J.Finding and evaluating community structure in networks[J].Physical Review E,2004,69(2):026113.
[26]RAGHAVAN U N,ALBERT R,KUMARA S.Near linear time algorithm to detect community structures in large-scale networks[J].Physical review E,2007,76(3):036106.
[27]ROSVALL M,BERGSTROM C T.Maps of random walks on complex networks reveal community structure[J].Proceedings of the National Academy of Sciences,2008,105(4):1118-1123.
[28]BO D,WANG X,SHI C,et al.Structural deep clustering network[C]//Proceedings of the web Conference 2020.2020:1400-1410.
[29]GAO H,HUANG H.Deep attributed network embedding[C]//Twenty-Seventh International Joint Conference on Artificial Intelligence(IJCAI)).2018.
[30]LIU D,JIA R X,LIU X,et al.A Unified Framework of Community Hiding Using Symmetric Nonnegative Matrix Factorization[J].Information Sciences,2024,663:120235.
[31]FIONDA V,PIRRO G.Community deception or:How to stopfearing community detection algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2017,30(4):660-673.
[32]LIU D,CHANG Z,YANG G,et al.Community hiding using agraph autoencoder[J].Knowledge-Based Systems,2022,253:109495.
[33]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations[C]//Proceeding of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:701-710.
[34]ZACHARY W W.An information flow model for conflict and fission in small groups[J].Journal of Anthropological Research,1977,33(4):452-473.
[35]LUSSEAU D,SCHNEIDER K,BOISSEAU O J,et al.The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations:can geographic isolation explain this unique trait?[J].Behavioral Ecology and Sociobio-logy,2003,54:396-405.
[36]GIRVAN M,NEWMAN M E J.Community structure in social and biological networks[J].Proceedings of the National Academy of Sciences,2002,99(12):7821-7826.
[37]LESKOVEC J,KLEINBERG J,FALOUTSOS C.Graph evolu-tion:Densification and shrinking diameters[J].ACM Transactions on Knowledge Discovery from Data,2007,1(1):2-es.
[38]CLAUSET A,NEWMAN M E J,MOORE C.Finding community structure in very large networks[J].Physical Review E,2004,70(6):066111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!