计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 308-316.doi: 10.11896/jsjkx.240800112

• 人工智能 • 上一篇    下一篇

考虑时变参数的自适应LQR智能车辆路径跟踪控制方法

张亚娟1,3, 冯灵霞1, 李国斌2   

  1. 1 黄河科技学院工学部 郑州 450000
    2 河南理工大学软件学院 河南 焦作 454000
    3 郑州市北斗高精度定位授时工程技术研究中心 郑州 450000
  • 收稿日期:2024-08-21 修回日期:2024-10-30 出版日期:2025-10-15 发布日期:2025-10-14
  • 通讯作者: 冯灵霞(2279087233@qq.com)
  • 作者简介:(gdlfyed@163.com)
  • 基金资助:
    教育部产学合作协同育人项目(220803631295944);河南省科技攻关计划(172102210380);河南省高等学校重点科研项目计划(24B520021,24B413005);河南省研究生教育改革与质量提升工程项目(YJS2023JD67)

Adaptive LQR Intelligent Vehicle Path Tracking Control Method Considering Time-varyingParameters

ZHANG Yajuan1,3, FENG Lingxia1, LI Guobin2   

  1. 1 Engineering Department,Huanghe S & T University, Zhengzhou 450000,China
    2 School of Software,Henan Polytechnic University,Jiaozuo,Henan 454000,China
    3 Zhengzhou Beidou High Precision Positioning and Timing Engineering Technology Research Center,Zhengzhou 450000,China
  • Received:2024-08-21 Revised:2024-10-30 Online:2025-10-15 Published:2025-10-14
  • About author:ZHANG Yajuan,born in 1979,master,associate professor.Her main research interests include vehicle self-control and intelligent hardware control.
    FENG Lingxia,born in 1978,master,associate professor.Her main research interests include computer application and intelligent hardware control.
  • Supported by:
    Collaborative Education Project of the Ministry of Education(220803631295944),Scientific and Technological Research Projects in Henan Province(172102210380),Key Research Projects Plan for Higher Education Institutions in Henan Province(24B520021,24B413005) and Graduate Education Reform and Quality Improvement Project in Henan Province(YJS2023JD67).

摘要: 为解决智能车辆循迹过程中,轮胎侧偏刚度摄动引发模型不确定导致的车辆循迹精度及稳定性下降的问题,提出了一种考虑轮胎侧偏刚度时变特性的智能车辆循迹控制方法。首先,基于改进的集员滤波算法及双轨动力学模型建立轮胎侧向力估计器,利用轮胎侧向力模型计算值与估计值之差设计轮胎侧偏刚度自适应更新规则;其次,将实时更新的轮胎侧偏刚度用于求解实时最优前轮转角,进而提出一种轮胎侧偏刚度自适应的ALQR智能车辆循迹控制器。CarSim与Simulink联合仿真和硬件在环仿真实验结果表明:ALQR控制器在高、低路面附着系数条件下较LQR(Linear Quadratic Regulator)跟踪精度平均提高65.867%,尤其在低附路面,LQR控制器忽略了轮胎刚度变化引发的循迹性能显著下降的问题,而ALQR控制器可通过实时更新的轮胎侧偏刚度实时求解最优前轮转角,保证了车辆循迹精度与稳定性。提出的考虑轮胎实时侧偏刚度的智能车辆循迹ALQR控制方法具有良好的适用性与实时性,对智能车辆控制系统设计具有重要的参考价值。

关键词: 智能车辆, 路径跟踪控制, 侧向力估计, 轮胎侧偏刚度, LQR, 硬件在环

Abstract: To solve the problem of vehicle tracking accuracy and stability degradation caused by model uncertainty resulting from tire cornering stiffness perturbation in the tracking process of intelligent vehicles,this paper proposes a tracking control method for intelligent vehicles considering the time-varying characteristics of tire cornering stiffness.Firstly,the tire lateral force estimator is established based on the improved set membership filter algorithm and the two-track dynamic model.The adaptive update rule of tire cornering stiffness is designed by using the difference between the calculated value and the estimated value of the tire lateral force model.Secondly,the real-time updated tire cornering stiffness is used to solve the real-time optimal front wheel angle,and then an ALQR intelligent vehicle tracking controller with adaptive tire cornering stiffness is proposed.The results of CarSim and Simulink co-simulation and hardware-in-the-loop simulation show that the proposed ALQR controller improves the tracking accuracy by 65.867% on average compared with LQR under the condition of high and low road adhesion coefficient.In particular,the LQR controller ignores the significant decline in tracking performance caused by changes in tire stiffness on low-adhesion roads.The proposed ALQR controller can solve the optimal front wheel angle in real time through real-time updated tire cornering stiffness to ensure vehicle tracking accuracy and stability.The tracking ALQR control method of intelligent vehicle considering real-time tire cornering stiffness proposed in this paper has good applicability.

Key words: Intelligent vehicle,Path following control,Lateral force estimation,Tire cornering stiffness,LQR,Hardware-in-the-loop(HIL)

中图分类号: 

  • U461.1
[1]Editorial Department of China Journal of Highway and Transport.Reviewon China's automotive engineering research progress:2023[J].China Journal of Highway and Transport,2023,36(11):1-192.
[2]CHENG S,CHEN H,WANG Z,et al.A game theoretical chassis domain approach to trajectory tracking for automated vehicles[J].IEEE Transactions on Vehicular Technology,2023,72(11):14051-14060.
[3]WU J,ZHANG J,NIE B,et al.Adaptive control of pmsm servo system for steering-by-wire system with disturbances observation[J].IEEE Transactions on Transportation Electrification,2022,8(2):2015-2028.
[4]SUN Z Z,LIU Y,ZHANG L C.Predictor and eso-based adaptive tracking control of heterogeneous vehicle platoon[J].Science China Technological Sciences,2024,67(9):2842-2852.
[5]CAO L L,LIU W,DAI K P,et al,Path tracking control of autonomous container trucks using angular compensation LQR[J].Automotive Safety and Energy,2024,15(3):413-423.
[6]LI K,LI Y.Fuzzy adaptive optimization prescribed performance control for nonlinear vehicle platoon[J].IEEE Transactions on Fuzzy Systems,2024,32(2):360-372.
[7]ZOU S,ZHAO W,WANG C.Tracking and synchronization control strategy of vehicle dual-motor steer-by-wire system via super-twisting SOSMC and MDCS[J].Mechanical Systems & Signal Processing,2023,183:109638.
[8]WANG Z,LING Y,MA M.A deep learning optimized LQRmethod for enhanced formation control with embedded systems[J].Engineering Research Express,2024,6:025203.
[9]MOKBEL E F F,ABD-EL-TAWWAB A M,MOURAD M,et al.Improving Handling Performance of a Four-Wheel Steering Vehicles Using LQR Controller[J].Journal of Advanced Engineering Trends,2024,43(2):509-516.
[10]ROKONUZZAMAN M,MOHAJER N,NAHAVANDI S.Effective adoption of vehicle models for autonomous vehicle path tracking:a switched MPC approach[J].Vehicle System Dyna-mics,2023,61(5):1236-1259.
[11]CHEN R,CHEN Z,DUAN Y,et al.Coupled longitudinal andlateral control for trajectory tracking of autonomous vehicle based on LTV-MPC approach[C]//WCX SAE World Congress Experience.2022.
[12]HU J,ZHONG X K,CHEN R N,et al.Path Tracking Control of Intelligent Vehicles Based on Fuzzy LQR[J].Automotive Engineering,2022,44(1):17-25,43.
[13]XU S,PENG H.Design,analysis,and experiments of previewpath tracking control for autonomous vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2020,21(1):48-58.
[14]YANG T,BAI Z,LI Z,et al.Intelligent vehicle lateral control method based on feedforward+ predictive LQR algorithm[J].Actuators,2021,10(9):228.
[15]HUANG C X,LEI F,HU L,et al.Lateral Stability ControlBased on Regional Pole Placement of In-wheel-motored Electric Vehicle[J].Automotive Engineering,2019,41(8):905-914.
[16]CHEN J H,XU Z M,ZHANG Z F.Suspension State Estimation Based on Wheelbase Preview at Variable Speed[J].Automotive Engineering,2023,45(6):1040-1049.
[17]FU Y S,LI S H,WANG G Y.State Estimation of Intelligent Electric Vehicle Considering Online Updating of Tire Cornering Stiffness[J].Mechanical Science and Technology for Aerospace Engineering,2024,43(1):150-158.
[18]LIANG Y X,LI Y N,AMIR K,et.al.Path following control of intelligent vehicles based on multi-model adaptive method[J].Journal of Chongqing University,2024,47(3):1-15.
[19]SUN X Q,WANG Y L,HU W W,et al.Research on Estimation Strategy of Vehicle Driving State Based on Tire Piecewise Affine Identification Model[J].Automotive Engineering,2023,45(7):1212-1221.
[20]LU T,WU X J.Identification of cornering stiffness and research on simplified vehicle models[J].China Measurement & Test,2023,49(5):97-107.
[21]LI J Y,WANG Z,LU R,et al.A component-based coding-decoding approach to set-membership filtering for time-varying systems under constrained bit rate[J].Automatica,2023,152:110874.
[22]LI Z Y,LI X R.Lateral and Longitudinal Control of Intelligent Vehicle Based on Adaptive LQR[J].Practical Automotive Technology,2023,48(2):101-107.
[23]SUN F X,SHAO J J,SHAN S F,et al.Feedforward-Predictive LQR Lateral Control for Adapting to Variable Road Curvature[J].Journal of Chongqing University of Technology(Natural Science),2024,38(2):45-54.
[24]WU H,ZHU H,LI X,et al.Trust-based distributed set-membership filtering for target tracking under network attacks[J].IEEE Access,2023,11:84468-84474.
[25]GUI Y S,CHEN J M,HU K.Set-membership filtering based remote monitoring of an unmanned surface vessel[J].Marine electrics,2021,41(12):13-16.
[26]LONG Y Z,WEI T,FENG J,et al.Estimation of Adaptive Robust Unscented Particle Filter State for Four-wheel Driving EV[J].Journal of Hunan University(Natural Sciences),2022,49(2):31-37.
[27]LUO Y T,ZHOU T Y,XU X T.Time-Varying LQR Control of Four-Wheel Steer /Drive Vehicle Based on Genetic Algorithm[J].Journal of South China University of Technology(Natural Science Edition),2021,49(3):114-122.
[28]GAO S,WANG Y Q,WANG Y H,et al.Longitudinal and lateral integrated feedback linearization control for intelligent vehicle[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(3):735-745.
[29]SUN Z,WANG R C,YE Q,et al.Investigation of Intelligent Vehicle Path Tracking Based on Longitudinal and Lateral Coordinated Control[J].IEEE Access,2020,8:105031-105046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!