计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800125-9.doi: 10.11896/jsjkx.240800125

• 网络&通信 • 上一篇    下一篇

基于改进白鲸优化算法的三维DV-Hop定位算法

陈悦, 冯锋   

  1. 宁夏大学信息工程学院 银川 750021
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 冯锋(feng_f@nxu.Edu.cn)
  • 作者简介:(2669131845@qq.com)
  • 基金资助:
    宁夏重点研发计划重点项目(2022BEG02016);宁夏自然科学基金(2023AAC03031)

Three Dimensional DV-Hop Location Based on Improved Beluga Whale Optimization

CHEN Yue, FENG Feng   

  1. School of Information Engeineering,Ningxia University,Yinchuan 750021,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:CHEN Yue,born in 1999,postgraduate.Her main research interests include improvement of intelligent algorithm,and so on.
    FENG Feng,born in 1971,professor.His main research interests include information system engineering and application,and so on.
  • Supported by:
    Major Projects of Ningxia Key Research and Development Program(2022BEG02016) and Natural Science Foundation of Ningxia(2023AAC03031).

摘要: 为解决无线传感器网络中传统三维DV-Hop(Distance Vector Hop)算法在应对复杂环境时存在节点定位精度低、误差过大的问题,提出了一种基于改进白鲸优化算法(Improved Beluga Whale Optimization,IBWO)的三维定位算法(IBWO-DV-Hop)。首先,通过多通信半径并引入修正因子优化节点最小跳数,并利用跳距加权优化方法修正平均跳距,以降低通信半径不确定性和跳数误差对定位精度的影响。其次,引入IBWO代替最小二乘法估算未知节点的位置,所做改进包括在白鲸算法初始化阶段采用Sobol序列和反向学习结合的策略对初始种群实施改进,增加种群多样性。然后,在勘探阶段和开发阶段分别引入自适应t分布变异和自适应Levy飞行策略,增强算法的寻优能力。最后,在鲸落阶段引入透镜成像反向学习策略,提升算法的全局寻优能力。实验结果表明,与传统三维DV-hop算法以及其他同类算法相比,该算法具有更高的定位精度。

关键词: 无线传感器网络, 三维DV-Hop算法, 白鲸优化算法, 多通信半径, 跳距加权优化, 自适应t分布变异, 透镜成像反向学习策略

Abstract: To address the issues of low node localization accuracy and large errors in traditional three dimensional DV-Hop algorithms in wireless sensor networks when dealing with complex environments,an improved beluga whale optimization(IBWO) based three dimensional localization algorithm(IBWO-DV-Hop) is proposed.Firstly,by optimizing the minimum hop count of nodes through multiple communication radius and introducing a correction factor,and using a hop distance weighted optimization method to correct the average hop distance,the impact of communication radius uncertainty and hop count error on positioning accuracy is reduced.Secondly,IBWO is introduced instead of the least squares method to estimate the position of unknown nodes.The improvements include using a combination of Sobol sequence and reverse learning strategy in the initialization stage of the Beluga algorithm to improve the initial population and increase population diversity.Then,adaptive t-distribution mutation and adaptive Levy flight strategy are introduced in the exploration and development stages respectively to enhance the algorithm’s optimization ability.Finally,a lens imaging reverse learning strategy is introduced in the whale landing stage to enhance the algorithm’s global optimization ability.Experimental results show that compared with traditional three dimensional DV-Hop algorithms and other similar algorithms,the proposed algorithm has higher positioning accuracy.

Key words: Wireless sensor networks, Three dimensional DV-Hop algorithms, Beluga whale optimization algorithms, Multiple communication radius, Hop distance weighted optimization, Adaptive t-distribution mutation, Lens imaging reverse learning strategy

中图分类号: 

  • TP301.6
[1]WANG M H,HUANG C,WANG Y,et al.Research Progress on Node Redeployment in Wireless Sensor Networks [J].Chinese Journal of Computer Applications Research,2023,40(4):978-986.
[2]KANWAR V,KUMAR A.Range free localization for three dimensional wireless sensor networks using multi objective particle swarm optimization [J].Wireless Personal Communications,2021,117:901-921.
[3]POONGUZHALI P K,ANANTHAMOORTHY N P.Improved energy efficient WSN using ACO based HSA for optimal cluster head selection [J].Peer-to-Peer Networking and Applications,2020,13:1102-1108.
[4]XU J,MA M D,LAW C L.Cooperative angle-of-arrival position localization [J].Measurement,2015,59:302-313.
[5]HARTER A,HOPPER A,STEGGLES P,et al.The anatomyof a context-aware application[J].Wireless Networks,2002,8(2/3):187-197.
[6]OGUEUIOFOR O S,ANIEDU A N,EJIOFOR H C,et al.Trilateration based localization algorithm or wireless sensor network[J].International Journal of Innovative Science and Ma-dern Engineering(IJISME),2013,1(10):21-27.
[7]AWAD A,FRUNZKE T,DRESSLER F.Adaptive distance estimation and localization in WSN using RSSI measures[C]//10th Euromicro Conference on Digital System Design Architectures,Methods and Tools(DSD 2007).2007:471-478.
[8]WANG H H,WAN J C,LlU R Y.A novel ranging methodbased on RSSI[J].Energy Procedia,2011,12(1):230-235
[9]CAPKUNS,HAMDI M,HUBAUX J P.GPS-free positioning inmobile ad-hoc networks[J].Cluster Computing,2002,5(2):157-167.
[10]NICULESCU D,NATH B.DV based positioning in ad hoc networks[J].Telecommunication Systems,2003,22(1/2/3/4):267-280.
[11]WANG L,LIU J J,QI J Y,et al.DV-HOP Localization Algorithm Based on Range Correction and Improved Whale Optimization [J].Chinese Instrument Technique and Sensor,2022(2):116-121,126.
[12]REN K Q,PAN C M.Improved DV-Hop Localization Algo-rithm Integrating Quantization of RSSI Hops and Error Correction [J].Chinese Journal of Sensing Technology,2020,33(5):718-724.
[13]LI Q,HUANG X,SHEN D,et al.Dynamic Parameter Adjustment Differential Evolution Localization Algorithm Based on DV-Hop Range Correction [J].Chinese Progress in Laser and Optoelectronics,2021,58(6):347-354.
[14]TANG D H,WANG Y D,MA X G,et al.Stevenson Iteration Improved DV-Hop Node Localization in Wireless Sensor Networks [J].Chinese Journal of Jilin University(Engineering Edition),2022,52(12):3015-3021.
[15]LIU Y,GAO L.Improved Artificial Bee Colony OptimizationDV-Hop Localization Algorithm [J].Chinese Progress in Laser and Optoelectronics,2020,57(19):240-245.
[16]WANG G W,CHEN Y Y.DV-Hop Localization AlgorithmBased on Hop Count Correction and Genetic Simulated Annealing Optimization [J].Chinese Computer Science,2021,48(S1):313-316.
[17]ZHONG C T,LI G,ZENG M.Beluga whale optimization:a novel nature-inspired metaheuristic algorithm[J].Knowledge-Based Systems,2022,251:109215.
[18]WU S Q,YAN J G,YANG B,et al.Multi-Strategy ImprovedPeregrine Optimizer and Its Application in Path Planning [J/OL].[2024-06-03].http://kns.cnki.net/kcms/detail/51.1307.TP.20240424.1641.008.html.
[19]ZHANG W K,LIU S,HUANG Q,et al.Balanced OptimizerConsidering Distance Factor and Elite Evolution Strategy [J].Chinese Computer Applications,2022,42(6):1844-1851.
[20]WANG Z Y,WANG L.Multi-Strategy Monarch Butterfly Optimization Algorithm and Its Engineering Applications [J].Chinese Journal of Tsinghua University(Science and Technology),2024,64(4):668-678.
[21]LI B,PAN Z C.Empire Competition Improved Algorithm Based on Lens Inverse Learning and Differential Evolution [J/OL].[2024-06-18].https://doi.org/10.19678/j.issn.1000-3428.0069309.
[22]YU C C,XU W,ZHONG Y C,et al.DV-Hop Localization Based on Multiple Communication Radii and Improved Genetic Algorithm [J].Chinese Instrument Technique and Sensor,2023(2):99-103,120.
[23]LIU C Z,ZHANG L H.Localization Precision Optimization of Wireless Sensor Networks Based on DV-Hop Algorithm [J].Chinese Progress in Laser and Optoelectronics,2021,58(22):498-504.
[24]CHAI Q W,CHU S C,PAN J S,et al.A parallel WOA with two communication strategies applied in DV-Hop localization method[J].EURASlP journal on Wireless Communications and Networking,2020,50:1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!