计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800134-9.doi: 10.11896/jsjkx.240800134

• 图像处理&多媒体技术 • 上一篇    下一篇

YOLO-BFEPS:一种高效注意力增强的跨尺度YOLOv10火灾检测模型

高均益, 张伟, 李泽麟   

  1. 湖北大学人工智能学院 武汉 430062
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 张伟(zhang_wei@mail.hubu.edu.cn)
  • 作者简介:(junyi_gao1130@163.com)
  • 基金资助:
    国家自然科学基金面上项目(62273135);湖北省自然科学基金项目(2021CFB460);国家级大学生创新创业训练计划基金项目(202310512014X)
    This work was supported by the National Natural Science Foundation of China(62273135),Natural Science Foundation of Hubei Province(2021CFB460) and National Innovation and Entrepreneurship Training Program for College Students(202310512014X).

YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model

GAO Junyi, ZHANG Wei, LI Zelin   

  1. College of Artificial Intelligence,Hubei University,Wuhan 430062,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:GAO Junyi,born in 2000,postgra-duate. His main research interests include image processing and artificial intelligence.
    ZHANG Wei,born in 1979,Ph.D,associate professor,master’s supervisior.His main research interests include computer vision,image processing and artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(62273135),Natural Science Foundation of Hubei Province(2021CFB460) and National Innovation and Entrepreneurship Training Program for College Students(202310512014X).

摘要: 为解决传统火灾检测模型在处理复杂场景时,特征提取不充分和模型复杂度过高导致预警延迟及识别精度下降的问题,提出一种可部署到终端设备上的基于改进YOLOv10的新型火灾检测模型YOLO-BFEPS(YOLO Bi-directional Fusion with Enhanced Partial Self-Attention),实现了同时对烟雾与火灾的快速准确检测。首先,改进PSA模块,加强空间语义特征提取,解决通道降维建模跨通道关系时带来的信息丢失与计算复杂度增加的问题,提高检测精度,并将改进后的模块记为E-PSA(Enhanced Partial Self-Attention);其次,基于BiFPN提出特征层双向跨连接的思想进行尺度融合,重新设计了YOLOv10的颈部结构,并创新性地增加来自低特征层信息的融合,在保持准确度的同时大大减少了模型参数以及计算复杂度;引入Faster Block 结构替换C2f模块的 Bottleneck 结构,实现模型的轻量化设计,并将其称为 C2f-Faster。最后,通过在多个数据集上进行实验验证了所提模型的有效性,其在参数量减少35.5%、计算复杂度降低17.6%的基础上,将检测精度(Precision)和mAP@0.5分别提升了5.9%和1.4%。

关键词: 高效注意力, 多尺度特征, 加权双向特征金字塔, 火灾检测, YOLOv10, 轻量化, 计算机视觉, 深度学习

Abstract: In order to solve the problems of early warning delay and reduced recognition accuracy of traditional fire detection models caused by insufficient feature extraction and excessive model complexity when dealing with complex scenes,a target detection model based on improved YOLOv10,which can be deployed on terminal devices,is proposed to achieve rapid and accurate detection of both smoke and fire. It is named YOLO-BFEPS(YOLO bi-directional fusion with enhanced partial self-attention) new fire detection model. Firstly,the PSA module is improved to enhance spatial semantic feature extraction,solve the problems of information loss and increased computational complexity caused by channel dimensionality reduction modeling cross-channel relationships,improve detection accuracy,and record the improved module as E-PSA(enhanced partial self-attention). Secondly,scale fusion is carried out based on BiFPN’s idea of bidirectional cross-connection of feature layers,and the neck structure of YOLOv10 is redesigned,and the fusion of information from low feature layers is innovatively increased,which greatly reduce the model parameters and computational complexity while maintaining accuracy. The bottleneck structure of C2f module is replaced by a faster block structure,the lightweight design of the model is implemented and it is called C2f-Faster. Finally,experiments are carried out to verify the effectiveness of the proposed model on multiple datasets. The results show that the proposed model can improve the Precision and mAP@0.5 by 5.9% and 1.4% respectively on the basis of reducing the number of parameters by 35.5% and the computational complexity by 17.6%

Key words: Efficient attention, Multi-scale feature, Bi-directional weighted feature pyramid networks, Fire detection, YOLOv10, Lightweight, Computer vision, Deep learning

中图分类号: 

  • TP391
[1]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149.
[2]DAI J,LI Y,HE K,et al. R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:379-387.
[3]HE K,GKIOXARI G,DOLLAR P,et al. Mask R CNN [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2020,42(2):386-97.
[4]BOCHKOVSKIY A,WANG C Y,LIAO H Y M. Yolov4:Optimal speed and accuracy of object detection[J]. arXiv:2004.10934,2020.
[5]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,October 11-14,2016,Proceedings,Part I 14. Springer International Publishing,2016:21-37.
[6]LIN T,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017:2980-2988.
[7]WANG J H,LI B M. Research on a real-time traffic flow collection system based on the YOLO model [J/OL]. Computer Technology and Development,2024:1-6. https://doi.org/10.20165/j.cnki.ISSN1673-629X.2024.0185.
[8]RUAN Z Y. Research on multi-target tracking technology in video for moving platforms in complex ground scenarios [D]. Nanjing:Nanjing University of Science and Technology,2023.
[9]YUAN Z Z. Research on the detection of laterally spreading tumors in the large intestine based on an improved YOLO model [D]. Changchun:Jilin University,2023.
[10]WANG K F. Research on computer-aided diagnosis based on images of distal radius fractures [D]. Jinan:Shandong University of Traditional Chinese Medicine,2023.
[11]ZHAO B T ,CHENG R F,JIA X F. YOLOv8 crack defect detection algorithm incorporating multi-scale features [J/OL]. Computer Engineering and Applications,1-10. http://kns.cnki.net/kcms/detail/11.2127.TP.20240821.0832.008.html.
[12]AO S M,ZHOU S Y,YANG Z Y,et al.Steel plate surface defect detection based on KAS-YOLO[J]. Modular Machine Tool &Automatic Manufacturing Technique,2024(8):168-174.
[13]SU L,ZHANG S,DING W. An Improved Real-Time Detection Method for Flame and Smoke Identification Based on YOLOv5[C]//2023 6th International Conference on Intelligent Autonomous Systems(ICoIAS). IEEE,2023:59-64.
[14]WANG T,CAO R,WANG L. FE-YOLO:An Efficient andLightweight Feature-Enhanced Fire Detection Method[C]//2022 3rd International Conference on Electronics,Communications and Information Technology(CECIT). IEEE,2022:253-258.
[15]PHAN D T,YAP K H,GARG K,et al. Vision-Based Early Fire and Smoke Detection for Smart Factory Applications Using FFS-YOLO[C]//2023 IEEE 25th International Workshop on Multimedia Signal Processing(MMSP). IEEE,2023:1-6.
[16]LI X J,ZHANG D S,SUN L L,et al. CNN-based lightweight flame detection method in complex scenes[J]. Pattern Recognition and Artificial Intelligence,2021,34(5):415-422.
[17]LU Y,ZHANG L,XIE W. YOLO-compact:an efficient YOLO network for single category real-time object detection[C]//2020 Chinese Control and Decision Conference(CCDC). IEEE,2020:1931-1936.
[18]WANG A,CHEN H,LIU L,et al. Yolov10:Real-time end-to-end object detection[J]. arXiv:2405.14458,2024.
[19]CHEN J,KAO S,HE H,et al. Run,don’t walk:chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023:12021-12031.
[20]VOITA E,TALBOT D,MOISEEV F,et al. Analyzing multi-head self-attention:Specialized heads do the heavy lifting,the rest can be pruned[J]. arXiv:1905.09418,2019.
[21]VASWANI A,SHAZEER N,PARMAR N,et al.Attention Is All You Need[J]. arXiv:1706.03762, 2017.
[22]MA J,LI F,WANG B. U-mamba:Enhancing long-range de-pendency for biomedical image segmentation[J]. arXiv:2401.04722,2024.
[23]HOU Q,ZHOU D,FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:13713-13722.
[24]LIN T,DOLLAR P,GIRSHICK R,et al. Feature Pyr amidNetworks for Object Detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:21-26.
[25]LIU S,QI L,QIN H,et al. Path Aggregation Network for Instance Segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2018:18-23.
[26]NIE D,XUE J,REN X. Bidirectional pyramid networks for semantic segmentation[C]//Proceedings of the Asian Conference on Computer Vision. 2020.
[27]ELFWING S,UCHIBE E,DOYA K. Sigmoid-weighted linearunits for neural network function approximation in reinforcement learning[D]. Okinawa Institute of Science and Technology Graduate University,2018.
[28]LEE Y,WATERMAN A,AVIZIENIS R,et al. A 45 nm1.3 GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector accelerators[C]//ESSCIRC 2014-40th European Solid State Circuits Conference(ESSCIRC). IEEE,2014:199-20
[29]DAI M,DORJOY M M H,MIAO H,et al. A New Pest Detection Method Based on Improved YOLOv5m[J]. Insects,2023,14(1):54-54.
[30]WANG C Y,BOCHKOVSKIY A,LIAO H Y M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023:7464-7475.
[31]VARGHESE R,SAMBATH M. YOLOv8:A Novel Object Detection Algorithm with Enhanced Performance and Robustness[C]//2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems(ADICS). IEEE,2024:1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!