计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 280-288.doi: 10.11896/jsjkx.240800161

• 计算机网络 • 上一篇    下一篇

基于卷积双延迟深度确定性策略梯度的卫星网络多路径路由算法

魏德宾, 张怡, 许平多, 王欣睿   

  1. 大连大学信息工程学院 辽宁 大连 116622
  • 收稿日期:2024-08-30 修回日期:2024-11-19 出版日期:2025-11-15 发布日期:2025-11-06
  • 通讯作者: 魏德宾(weidebin@163.com)
  • 基金资助:
    国家自然科学基金(U21B2003)

Multipath Routing Algorithm for Satellite Networks Based on Convolutional Twin Delay Deep Deterministic Policy Gradient

WEI Debin, ZHANG Yi, XU Pingduo, WANG Xinrui   

  1. School of Information Engineering,Dalian University,Dalian,Liaoning 116622,China
  • Received:2024-08-30 Revised:2024-11-19 Online:2025-11-15 Published:2025-11-06
  • About author:WEI Debin,born in 1978,Ph.D,asso-ciate professor,is a member of CCF(No.22419M).His main research interests include spatial information network transmission technology,traffic engineering and network optimization.
  • Supported by:
    National Natural Science Foundation of China(U21B2003).

摘要: 在卫星网络中,受地理位置及人们生活习惯等因素影响,卫星覆盖区域内用户的需求差异会造成卫星网络负载不均衡。针对这一问题,提出了一种基于卷积双延迟深度确定性策略梯度的多路径路由算法(Convolutional Twin Delayed Deep Deterministic Policy Gradient Multipath Routing,CTD3-MR)。该算法在软件定义网络(Software Defined Network,SDN)结构下,将CTD3作为智能体部署在控制器中,并将动态变化的链路剩余带宽、传输时延、丢包率和时空等级作为网络状态输入智能体进行训练,输出动作为网络链路的权值,使用最大链路带宽利用率、平均端到端时延和网络丢包率的加权和作为奖励函数来调整动作。智能体训练收敛后,控制器根据智能体输出的网络链路权重得到k-最短路径,把路径权重比作为路径流量分配比率,生成最优路由策略转发至卫星进行多路径传输。最后将CTD3-MR与TD3,TMR和ECMP路由算法进行比较,实验结果表明,CTD3-MR相较于其他路由算法,平均端到端时延至少缩短了7.64%,丢包率降低了28.65%,最大链路带宽利用率降低了11.44%,流量分布指数提高了5.82%,提高了网络负载均衡性能。

关键词: 卫星网络, 软件定义网络, 多路径路由, 深度强化学习, 负载均衡

Abstract: In the satellite network,due to the influence of geographical location and people's living habits,the difference in the needs of users in the satellite coverage area will cause the load imbalance of the satellite network.A multi-path routing algorithm based onconvolutional double-delay deep deterministic policy gradient(CTD3-MR) is proposed for the above problem.Under the SDN structure,CTD3 is deployed in the controller as the agent,and the dynamically changing links' residual bandwidth,transmission delay,packet loss rate and spatiotemporal level are trained as the network state input agent,and the output action is used as the network link weight,and the weighted sum of the maximum link bandwidth utilization,average end-to-end delay and network packet loss rate is used as the reward function to adjust the action.After the agent training converges,the controller obtains the k-shortest path according to the network link weight output by the agent,and takes the path weight ratio as the path traffic allocation ratio to generate an optimal routing strategy and forward it to the satellite for multipath transmission.Finally,CTD3-MR is compared with TD3,TMR and ECMP routing algorithms.Experimental results show that compared with other routing algorithms,CTD3-MR reduces the average end-to-end delay by at least 7.64%,the packet loss rate by 28.65%,the maximum link bandwidth utilization by 11.44%,and the traffic distribution index by 5.82%,which improves the network load balancing performance.

Key words: Satellite networks, Software defined networking, Multipath routing, Deep reinforcement learning, Load balancing

中图分类号: 

  • TP393
[1]HUANG Y,JIANG X,CHEN S,et al.Pheromone incentivized intelligent multipath traffic scheduling approach for LEO satellite networks[J].IEEE Transactions on Wireless Communications,2022,21(8):5889-5902.
[2]ZENG G,ZHAN Y,PAN X.Failure-tolerant and low-latencytelecommand in mega-constellations:The redundant multi-path routing[J].IEEE Access,2021,9:34975-34985.
[3]WANG C,REN Z,CHENG W,et al.CDMR:effective computing-dependent multi-path routing strategies in satellite and terrestrial integrated networks[J].IEEE Transactions on Network Science and Engineering,2022,9(5):3715-3730.
[4]YOU Q D,WANG X Y,JIN X H,et al.Multipath Routing Algorithm for Satellite Network for Fast Information Backhaul[J].Geomatics and Engineering Science of Wuhan University(Engineering Science),2019,52(8):747-752.
[5]TANG F,ZHANG H,YANG L T.Multipath cooperative routing with efficient acknowledgement for LEO satellite networks[J].IEEE Transactions on Mobile Computing,2018,18(1):179-192.
[6]QI H,GUO Y,HOU D,et al.SDN-based dynamic multi-pathrouting strategy for satellite networks[J].Future Generation Computer Systems,2022,133:254-265.
[7]LIU X,ZHOU H,ZHANG Z,et al.Multipath Cooperative Routing in Ultra-Dense LEO Satellite Networks:A Deep Reinforcement Learning-Based Approach[J].IEEE Internet of Things Journal,2025,12(2):1789-1804.
[8]LI J H,LI H W,LAI Z Q,et al.DetSpace:Distributed congestion free routing for global deterministic network in mega-constellations[J].China Communications,2024,21(12):203-216.
[9]WEI W,FU L,GU H,et al.Iris:Towards Intelligent Reliable Routing for Software Defined Satellite Networks[J].IEEE Transactions on Communications,2025,73(1):454-468.
[10]WANG H,RAN Y Y,ZHAO L,et al.Dynamic Routing Algorithm for Low Earth Orbit Satellite Network Based on Deep Graph Reinforcement Learning[J].Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition,2023,35(4):596-605.
[11]DONG F,SONG J,ZHANG Y,et al.DRL-Based Load-Balancing Routing Scheme for 6G Space-Air-Ground Integrated Networks[J].Remote Sensing,2023,15(11):2801.
[12]LI X T,ZHANG Y S.An Artificial Intelligence Routing Method for SDN Networks Suitable for Low-Earth Orbit Satellites[J].Electronic Measurement Technology,2020,43(22):109-114.
[13]WANG C,WANG H,WANG W.A Two-Hops State-AwareRouting Strategy Based on Deep Reinforcement Learning for LEO Satellite Networks[J].Electronics,2019,8(9):920.
[14]XU G,ZHAO Y,RAN Y,et al.Spatial Location Aided Fully-Distributed Dynamic Routing for Large-Scale LEO Satellite Networks[J].IEEE Communications Letters,2022,26(12):3034-3038.
[15]CHU K,CHENG S,ZHU L.A robust routing strategy based on deep reinforcement learning for mega satellite constellations[J].Electronics Letters,2023,59(11):e12820.
[16]BAI Q.Research on Load Balancing Routing Strategy for Satellite Network Based on Uncertainty Theory[D].Nanjing:Nanjing University of Posts and Telecommunications,2020.
[17]NA Z Y,PAN Z,LIU X,et al.Distributed routing strategybased on machine learning for LEO satellite network[J].Wireless Communications and Mobile Computing,2018(3/4):1-10.
[18]WEI D B,CAO Y,YANG L,et al.A Routing Strategy for LEO Satellite Network Based on Spatiotemporal Hierarchy[J].Journal of Aeronautics and Astronautics,2023,44(16):204-214.
[19]WEI L H,LIU G W,LIU Y,et al.Research on Satellite Internet Routing Optimization Based on Deep Reinforcement Learning[J].Space-Earth Integrated Information Network,2022,3(3):65-71.
[20]CHIM T W,YEUNG K L,LUI K S.Traffic distribution overequal-cost-multi-paths[J].Computer Networks,2005,49(4):465-475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!