计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240900022-4.doi: 10.11896/jsjkx.240900022

• 大语言模型技术及应用 • 上一篇    下一篇

大模型驱动的AI应用服务平台

梁秉豪, 张传刚, 袁明明   

  1. 浪潮通信信息系统有限公司 济南 250013
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 梁秉豪(liangbinghao@inspur.com)
  • 基金资助:
    泰山产业领军人才项目(tscx202312006);山东省博士后创新项目(SDCX-ZG-202400307)

Large Model Driven AI Application Service Platform

LIANG Binghao, ZHANG Chuangang, YUAN Mingming   

  1. Inspur Communication Information System Co.,Ltd.,Jinan 250013,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:LIANG Binghao,born in 1991,Ph.D.His main research interests include artificial intelligence and computing power network application.
  • Supported by:
    Taishan Industrial Leading Talent Project(tscx202312006) and Shandong Postdoctoral Innovation Project(SDCX-ZG-202400307).

摘要: 随着企业数智化转型的持续推进,人工智能技术已经开始应用到企业内部管理、经营分析和生产效率提升等各个方面。然而,传统的AI应用研发流程涉及数据采集、数据清洗、特征提取、算法建模和应用研发等多个环节。整体技术门槛高,团队成员协作难,硬件资源利用率低,难以支撑数智化业务需求的敏捷落地。针对上述问题,提出了一套基于预训练大模型的AI应用服务平台。该平台主要面向AI应用研发和运营全过程管理进行设计,大幅降低了团队协作和资产管理难度。针对预备态、设计态和运行态中的核心流程,引入了预训练大模型和低代码技术,通过构建标注大模型、测试大模型和运营大模型,提升了AI应用的研发效率,同时实现了对运营数据的实时分析,保障了用户的使用体验,并大幅提升了硬件资源的利用率。

关键词: AI应用, 研发服务, 智能标注, 自动测试, 运营服务

Abstract: With the continuous advancement of the transformation of enterprise data intelligence,artificial intelligence technology has begun to be applied to various aspects of enterprise internal management,operation analysis and production efficiency improvement.However,the traditional AI application research and development process involves data acquisition,data cleaning,feature extraction,algorithm modeling,and application research and development.The overall technical threshold is high,the collaboration of team members is difficult,the utilization rate of hardware resources is low,and it is difficult to support the agile landing of digital intelligent business requirements.To solve these problems,a set of AI application service platform based on pre-trained large model is proposed.The platform is mainly designed for AI application research and development and operation management,which greatly reduces the difficulty of team collaboration and asset management.For the core processes in the preparation state,design state and running state,the pre-trained large model and low-code technology are introduced.By constructing the labeled large model,the test large model and the operation large model,the research and development efficiency of AI application is improved.Meanwhile,the real-time analysis of operational data is realized,the user experience is guaranteed and the utilization rate of hardware resources is greatly improved.

Key words: Artificial intelligence application, Research and development services, Intelligent annotation, Automatic test, Operation service

中图分类号: 

  • TP311
[1]BERNSTEIN D.Containers and Cloud:From LXC to Docker to Kubernetes[J].Cloud Computing,IEEE,2014,1(3):81-84.
[2]NVIDIA.NVIDIA Virtual GPU Software Documentation v18.0[EB/OL].https://docs.nvidia.com/vgpu/18.0/index.html.
[3]GU J,SONG S,LI Y,et al.GaiaGPU:Sharing GPUs in Container Clouds[C]//2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications,Ubiquitous Computing & Communications,Big Data & Cloud Computing,Social Computing & Networking,Sustainable Computing & Communications.2018,469-476.
[4]TAN Z,LI D W,WANG S,et al.Large Language Models for Data Annotation:A Survey [J].arXiv:2402.13446,2024.
[5]JING Z,SU Y Y,HAN Y K,et al.When Large Language Mo-dels Meet Vector Databases:A Survey[J].arXiv:2402.01763,2024.
[6]PASZKE A,GROSS S,MASSAF,et al.PyTorch:An Imperative Style,High-Performance Deep Learning Library[J].arXiv:2209.15428,2019.
[7]ABADI M,AGARWAL A,BARHAM P,et al.TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems [J].arXiv:1605.08695,2016.
[8]ZHOU Y,YANG K.Exploring TensorRT to Improve Real-Time Inference for Deep Learning[C]//2022,IEEE 24th Int Conf on High Performance Computing & Communications;8th Int Conf on Data Science & Systems;20th Int Conf on Smart City;8th Int Conf on Dependability in Sensor,Cloud & Big Data Systems & Application(HPCC/DSS/SmartCity/DependSys).2022.
[9]KWON W,LI Z H,ZHUANG S Y,et al.Efficient MemoryManagement for Large Language Model Serving with PagedAttention[J].arXiv:2309.06180,2023.
[10]BEN W.MLflow:A Tool for Managing the Machine Learning Lifecycle[EB/OL].https://mlflow.org/docs/latest/index.html.
[11]YANG A,YANG B S,HUI B Y,et al.Qwen2 Technical Report[J].arXiv:2407.10671,2024.
[12]CHENG T H,SONG L,GE Y X,et al.YOLO-World:Real-Time Open-Vocabulary Object Detection[J].arXiv:2401.17270v2,2024.
[13]GAO L,MADAAN A,ZHOU S,et al.PAL:Program-aidedLanguage Models[J].arXiv:2211.10435,2022.
[14]YANG L,YANG C,GAO S T,et al.An Empirical Study of Unit Test Generation with Large Language Models[J].arXiv:2406.18181v1,2024.
[15]NI C,WANG X Y,CHEN L S,et al.CasModaTest:A Cascaded and Model-agnostic Self-directed Framework for Unit Test Gene-ration[J].arXiv:2406.15743,2024.
[16]XIA Y H,CHEN Y Y,SHI T Y,et al.AICoderEval:Improving AI Domain Code Generation of Large Language Models[J].ar-Xiv:2406.04712,2024.
[17]MENG W,LIU Y,ZHU Y,et al.LogAnomaly:UnsupervisedDetection of Sequential and Quantitative Anomalies in Unstructured Logs[C]//Twenty-Eighth International Joint Conference on Artificial Intelligence(IJCAI-19).2019.
[18]TAO S,MENG W,CHENG Y,et al.LogStamp:Automatic Online Log Parsing Based on Sequence Labelling[J].Performance Evaluation Review,2022(4):49.
[19]ZHOU X H,LI G L,LIU Z Y.LLM As DBA [J].arXiv:2308.05481,2024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!