计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 237-244.doi: 10.11896/jsjkx.240900081

• 人工智能 • 上一篇    下一篇

基于图文知识融合的常识问答模型

蔡瑞祥, 赵书良, 何家瑶   

  1. 河北师范大学计算机与网络空间安全学院 石家庄 050024
    供应链大数据分析与数据安全河北省工程研究中心 石家庄 050024
    河北省网络与信息安全重点实验室 石家庄 050024
  • 收稿日期:2024-09-12 修回日期:2024-12-09 出版日期:2025-11-15 发布日期:2025-11-06
  • 通讯作者: 赵书良(zhaoshuliang@sina.com)
  • 作者简介:(ssznbdcrx@163.com)
  • 基金资助:
    国家社会科学基金重大项目(18ZDA200);河北省省级科技计划(20370301D,22567606H);河北省引进留学人员资助项目(C20230339);河北师范大学专项科技基金(L2023T03)

Commonsense Question Answering Model Based on Graph-Text Integrating

CAI Ruixiang, ZHAO Shuliang, HE Jiayao   

  1. College of Computer and Cyber Security,Hebei Normal University,Shijiangzhuang 050024,China
    Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics & Data Security,Shijiazhuang 050024,China
    Hebei Provincial Key Laboratory of Cyber and Information Security,Shijiangzhuang 050024,China
  • Received:2024-09-12 Revised:2024-12-09 Online:2025-11-15 Published:2025-11-06
  • About author:CAI Ruixiang,born in 2000,postgra-duate.His main research interests include machine learning and intelligent information processing.
    ZHAO Shuliang,born in 1967,Ph.D,professor,Ph.D supervisor, is a member of CCF(No.62875M).His main research interests include machine lear-ning and intelligent information proces-sing.
  • Supported by:
    National Social Science Foundation of China(18ZDA200),S&T Porogram of Hebei(20370301D,22567606H),Introducing Talents of Studying Overseas Fund of Hebei (C20230339) and Special Science and Technology Fund of Hebei Normal University (L2023T03).

摘要: 知识图谱在常识性问答中展现出了显著的成效。现有的方法通常利用问题中的实体来从知识图谱(KG)中检索局部子图,然后对其使用图神经网络(GNN)进行编码,随后将GNN编码的结果与语言模型(LMs)相结合,以进行答案的推理和问题的回答。然而,使用GNN和LMs的常识问答系统存在两个挑战:1)如何高效地提取知识图谱中的子图,对其知识与结构信息进行有效的表示和利用;2)如何实现问题上下文与子图知识的深度融合与联合推理。为此,提出了一个基于图文知识融合的常识问答模型(Graph-Text Integrating for Commonsense Question Answering,GTICQA)。该模型首先通过外部词典过滤精炼出关键实体,实现对知识子图的剪枝。然后,使用LM对问题上下文进行编码,用GNN编码器对精炼后的知识子图进行编码。同时,在子图编码的过程中,引入了一个新的k稀疏注意力机制增强对子图全局特征的提取并抑制噪声。最后,使用一种包括细粒度双模态交互融合层和均值交互融合层的知识融合方法,对两种知识表示进行深度融合与动态更新。在CommonsenseQA,OpenBookQA 和 MedQA-USMLE这3个数据集上对GTICQA进行了评估,其分别以79.12%,72.20%和39.40%的准确率超越了现有最佳方法,表明了模型在处理常识性问答上的优势。

关键词: 常识性问答, 多项选择问答, 知识融合, 知识图谱, 语言模型

Abstract: Knowledge graphs have demonstrated significant effectiveness in commonsense question answering.Existing methods typically utilize entities from the question to retrieve local subgraphs from the knowledge graph(KG),which are then encoded using graph neural networks(GNN).Subsequently,the GNN-encoded results are combined with language models(LMs) to infer answers and answer the questions.However,commonsense question answering systems using GNNs and LMs face two challenges:1) how to efficiently extract subgraphs from the knowledge graph,effectively represent and utilize their knowledge and structural information; 2) how to achieve deep integration and joint reasoning of the question context and subgraph knowledge.This paper proposes a graph-text integrating model for commonsense question answering(Graph-Text Integrating for Commonsense Question Answering,GTICQA).The model initially refines key entities by filtering through an external dictionary,achieving pruning of the knowledge subgraph,and then separately encodes the question context using an LM and the refined knowledge subgraph using a GNN encoder.Additionally,during the subgraph encoding process,a novel k-sparse attention mechanism is introduced to enhance the extraction of global features from the subgraph and suppress noise.Finally,a knowledge fusion method that includes fine-grained bimodal interaction fusion layers and mean interaction fusion layers is used to deeply integrate and dynamically update the two knowledge representations.The GTICQA model is evaluated on three datasets:CommonsenseQA,OpenBookQA,and MedQA-USMLE,achieving accuracy rates of 79.12%,72.20%,and 39.40%,respectively,surpassing the current best methods,demonstrating the model's advantage in handling commonsense question answering.

Key words: Commonsense QA, Multiple choice QA, Knowledge integration, Knowledge graph, Language model

中图分类号: 

  • TP391
[1]CHOWDHERY A,NARANG S,DEVLIN J,et al.Palm:Scaling language modeling with pathways[J].Journal of Machine Learning Research,2023,24(240):1-113.
[2]WEI J,WANG X,SCHUURMANS D,et al.Chain-of-thoughtprompting elicits reasoning in large language models[J].Advances in Neural Information Processing Systems,2022,35:24824-24837.
[3]JI Z,LEE N,FRIESKE R,et al.Survey of hallucination in natural language generation[J].ACM Computing Surveys,2023,55(12):1-38.
[4]FENG Y,CHEN X,LIN B Y,et al.Scalable Multi-Hop Rela-tional Reasoning for Knowledge-Aware Question Answering[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:1295-1309.
[5]YASUNAGA M,REN H,BOSSELUT A,et al.QA-GNN:Reasoning with Language Models and Knowledge Graphs for Question Answering[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:535-546.
[6]SUN Y,SHI Q,QI L,et al.JointLK:Joint Reasoning with Language Models and Knowledge Graphs for Commonsense Question Answering[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2022:5049-5060.
[7]REN H,DAI H,DAI B,et al.Lego:Latent execution-guidedreasoning for multi-hop question answering on knowledge graphs[C]//International Conference on Machine Learning.PMLR,2021:8959-8970.
[8]YU D,ZHU C,YANG Y,et al.Jaket:Joint pre-training ofknowledge graph and language understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:11630-11638.
[9]LIU S,QIN Y F,XU M,et al.Knowledge graph completion with triple structure and text representation[J].International Journal of Computational Intelligence Systems,2023,16(1):95.
[10]MENG Z,LIU F,CLARK T,et al.Mixture-of-Partitions:Infusing Large Biomedical Knowledge Graphs into BERT[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:4672-4681.
[11]LIN B Y,CHEN X,CHEN J,et al.KagNet:Knowledge-Aware Graph Networks for Commonsense Reasoning[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:2829-2839.
[12]ZHANG X,BOSSELUT A,YASUNAGA M,et al.GreaseLM:Graph REASoning Enhanced Language Models for Question Answering[C]//International Conference on Representation Learning(ICLR).2022.
[13]DONG J,ZHANG Q,HUANG X,et al.Hierarchy-aware multi-hop question answering over knowledge graphs[C]//Procee-dings of the ACM Web Conference 2023.2023:2519-2527.
[14]JIANG J,ZHOU K,WEN J R,et al.Great Truths are Always Simple:A Rather Simple Knowledge Encoder for Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models[C]//Findings of the Association for Computational Linguistics:NAACL 2022.2022:1730-1741.
[15]ZHENG C,KORDJAMSHIDI P.Dynamic Relevance GraphNetwork for Knowledge-Aware Question Answering[C]//Proceedings of the 29th International Conference on Computational Linguistics.2022:1357-1366.
[16]QIAO S J,YANG G P,YU Y,et al.QA-KGNet:a languagemodel-driven knowledge graph question-answering model.[J].Ruan Jian Xue Bao/Journal of Software,2023,34(10):4584-4600.
[17]HET T,ONG Y S,BAI L.Learning conjoint attentions forgraph neural nets[J].Advances in Neural Information Proces-sing Systems,2021,34:2641-2653.
[18]WANG K,SHEN W,YANG Y,et al.Relational Graph Attention Network for Aspect-based Sentiment Analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3229-3238.
[19]ZHANG Q,CHEN S,FANG M,et al.Joint reasoning withknowledge subgraphs for Multiple Choice Question Answering[J].Information Processing & Management,2023,60(3):103297.
[20]YE Q,CAO B,CHEN N,et al.Fits:Fine-grained two-stagetraining for knowledge-aware question answering[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2023:13914-13922.
[21]SU Y,ZHANG J,SONG Y,et al.PipeNet:Question Answering with Semantic Pruning over Knowledge Graphs[C]//Procee-dings of the 13th Joint Conference on Lexical and Computational Semantics(*SEM 2024).2024:360-371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!