计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240900131-10.doi: 10.11896/jsjkx.240900131
杜元花1, 陈盼1, 周楠2, 施开波2, 陈二阳2, 张远鹏3,4
DU Yuanhua1, CHEN Pan1, ZHOU Nan2, SHI Kaibo2, CHEN Eryang2, ZHANG Yuanpeng3,4
摘要: 目前大多数的多视角聚类方法都集中在无监督的学习场景上,它们不能利用数据中的标签信息。此外,它们还无法处理可能存在于数据中的异常值。为了解决这些问题,提出了一种基于相关熵的多视角低秩矩阵分解(CMLMF)的多视角数据半监督聚类方法。具体来说,采用一个约束矩阵引入标签信息,通过最大化相关熵准则来消除亲和矩阵和标签中异常值的影响。为了充分利用局部结构信息,还提出了一种基于相关熵的多视角约束图学习框架,自适应地提取隐藏在多视角数据中的局部结构。此外,提出了一种基于相关熵的多视角低秩矩阵分解(CMLMF)模型,该模型与自适应图学习框架相结合,以提取数据的全局重构信息。最后,设计了一种结合芬切尔共轭(FC)和块坐标更新(BCU)的有效优化算法来求解该模型。实验结果表明,与现有方法相比,CMLMF的准确性(ACC)、归一化互信息(NMI)和精度(Precision)有了很大的提高,其有效性得到验证。
中图分类号:
[1]LEE D D,SEUNG H S.Learning the parts of objects by non-negative matrix factorization [J].Nature,1999,401(6755):788-791. [2]UEDA M,NOMURA Y,MIYAO J,et al.Non-negative Matrix Factorization of a set of Economic Time Series with Graph Based Smoothing of Basis Vectors and Sparseness of the Coefficients[C]//2020 IEEE International Conference on Systems,Man,and Cybernetics(SMC).IEEE,2020:824-829. [3]ZONG L,ZHANG X,ZHAO L,et al.Multi-view clustering via multi-manifold regularized non-negative matrix factorization [J].Neural Networks,2017,88:74-89. [4] LI Z,LIU J,TANG X.Constrained clustering via spectral regularization[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:421-428. [5]LIU H,TAO Z,FU Y.Partition level constrained clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(10):2469-2483. [6]JING X Y,WU F,DONG X,et al.Semi-supervised multi-view correlation feature learning with application to webpage classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [7]NIE F,CAI G,LI X.Multi-view clustering and semi-supervised classification with adaptive neighbours[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [8]NIE F,CAI G,LI J,et al.Auto-weighted multi-view learning for image clustering and semi-supervised classification [J].IEEE Transactions on Image Processing,2017,27(3):1501-1511. [9]YANG Z,ZHANG H,LIANG N,et al.Semi-supervised multi-view clustering by label relaxation based non-negative matrix factorization [J].The Visual Computer,2023,39(4):1409-1422. [10] DU L,LI X,SHEN Y D.Robust Nonnegative Matrix Factorization via Half-Quadratic Minimization [C]//IEEE 12th International Conference on Data Mining.2012:201-210. [11]GUAN N Y,LIU T,ZHANG Y,et al.Truncated Cauchy Non-Negative Matrix Factorization [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(1):246-259. [12]PRÂINCIPE J C.Information Theoretic Learning:Renyi’s Entropy and Kernel Perspectives[M].Springer,2010:60-62. [13]SAIN S R.The nature of statistical learning theory [J].Taylor &Francis,1997,38(4):409. [14]GUO L Z,LI Y F.Hybrid semi-supervised learning with robust pseudo-label selection[J].Scientia Sinica Informationis,2024,54(3):623-637. [15]COENEN M,SCHACK T,BEYER D,et al.ConsInstancy:learning instance representations for semi-supervised panoptic segmentation of concrete aggregate particles [J].Machine Vision and Applications,2022,33(4):57. [16]ZHU X,GHAHRAMANI Z,LAFFERTY J D.Semi-supervised learning using gaussian fields and harmonic functions[C]//Proceedings of the 20th International Conference on Machine Learning(ICML-03).2003:912-919. [17]TIAN Z,KUANG R.Integrative classification and analysis ofmultiple arrayCGH datasets with probe alignment [J].Bioinformatics,2010,26(18):2313-2320. [18]NIE F,LI J,LI X.Parameter-free auto-weighted multiple graph learning:A framework for multiview clustering and semi-supervised classification[C]//IJCAI.2016:1881-1887. [19]YUAN Y, LI X, WANG Q,et al.A semi-supervised learning algorithm via adaptive Laplacian graph [J].Neurocomputing,2021,426:162-173. [20]GAO S,YU Z,JIN T,et al.Multi-view low-rank matrix factorization using multiple manifold regularization [J].Neurocompu-ting,2019,335:143-152. [21]HANSEN P C.Truncated singular value decomposition solu-tions to discrete ill-posed problems with ill-determined numerical rank [J].SIAM Journal on Scientific and Statistical Computing,1990,11(3):503-518. [22]HOTELLING H.Analysis of a complex of statistical variables into principal components [J].Journal of Educational Psycho-logy,1933,24(6):417. [23]XU W,LIU X,GONG Y.Document clustering based on non-negative matrix factorization[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval.2003:267-273. [24]MACLEAN W J,TSOTSOS J K.Fast pattern recognition using normalized grey-scale correlation in a pyramid image representation [J].Machine Vision and Applications,2008,19:163-179. [25]SHEN Q,BAN X,LIU R,et al.Decay-weighted extreme learning machine for balance and optimization learning [J].Machine Vision and Applications,2017,28:743-753. [26]FENN S,MENDES A,BUDDEN D M.Addressing the non-functional requirements of computer vision systems:a case study[J].Machine Vision and Applications,2016,27:77-86. [27]STARCK J L,MURTAGH F,FADILI J M.Sparse image and signal processing:wavelets,curvelets,morphological diversity [M].Cambridge University Press,2010. [28]CHENG H,LIU Z,YANG J.Sparsity induced similarity measure for label propagation[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:317-324. [29]XU Y,YIN W.A block coordinate descent methodfor regulari-zed multiconvex optimization with applications to nonnegative tensor factorization and completion [J].SIAM Journal on Imaging Sciences,2013,6(3):1758-1789. [30]ROCKAFELLAR R T.Second-order convex analysis [J].J.Nonlinear Convex Anal,1999,1(1-16):84. [31]SHI H J M,TU S,XU Y,et al.A primer on coordinate descent algorithms [J].arXiv:1610.00040,2016. [32]PENG Z,WU T,XU Y,et al.Coordinate friendly structures,algorithms and applications [J].arXiv:1601.00863,2016. [33]LEE D,SEUNG H S.Algorithms for non-negative matrix factorization [J].Advances in Neural Information Processing Systems,2000,13. [34]CAI D,HE X,HAN J,et al.Graph regularized nonnegative matrix factorization for data representation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(8):1548-1560. [35]CAI D,HE X,HAN J.Locally consistent concept factorization for document clustering [J].IEEE Transactions on Knowledge and Data Engineering,2010,23(6):902-913. [36]TAO H,HOU C,NIE F,et al.Scalable multi-view semi-supervised classification via adaptive regression [J].IEEE Transactions on Image Processing,2017,26(9):4283-4296. [37]WANG H,YANG Y,LIU B.GMC:Graph-based multi-viewclustering [J].IEEE Transactions on Knowledge and Data Engineering,2019,32(6):1116-1129. [38]ZHANG C,FU H,LIU S,et al.Low-rank tensor constrainedmulti-view subspace clustering[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1582-1590. [39]PAN B,LI C,CHE H.Nonconvex low-rank tensor approximation with graph and consistent regularizations for multi-view subspace learning [J].Neural Networks,2023,161:638-658. [40]JIA Y,LIU H,HOU J,et al.Multi-view spectral clustering tailored tensor low-rank representation [J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(12):4784-4797. [41]HUANG A,WANG Z,ZHENG Y,et al.Embedding regularizer learning for multi-view semi-supervised classification [J].IEEE Transactions on Image Processing,2021,30:6997-7011. [42]NENE S A,NAYAR S K,MURASE H.Columbia object image library(coil-20) :CUCS-006-96[R].Columbia University,1996. [43]WANG S,GU X,LU J,et al.Unsupervised discriminant canonical correlation analysis for feature fusion[C]//2014 22nd International Conference on Pattern Recognition.IEEE,2014:1550-1555. [44]CHEN S,ZHAO H,KONG M,et al.2D-LPP:A two-dimensionalextension of locality preserving projections [J].Neurocompu-ting,2007,70(4/5/6):912-921. [45]LEE K C,HO J,KRIEGMAN D J.Acquiring linear subspaces for face recognition under variable lighting [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):684-698. [46]ASUNCION A,NEWMAN D.UCI Machine Learning Repository [EB/OL].https://archive.ics.uci.edu/ml/. [47]HUBERT L,ARABIE P.Comparing partitions journal of classification [J].Google Scholar,1985,2(1):193-218. [48]XU W,GONG Y.Document clustering by concept factorization[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.2004:202-209. [49]LI Z X,LIN K D,GUO J H,et al.Safety evaluation model for transport vehicles based on internet of vehicles data[J].Journal of Nantong University(Natural Science Edition),2020,19(1):26-32. |
|