计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 294-302.doi: 10.11896/jsjkx.241000114
钟博洋, 阮彤, 张维彦, 刘井平
ZHONG Boyang, RUAN Tong, ZHANG Weiyan, LIU Jingping
摘要: 在医疗人工智能领域,从医患对话中自动生成电子病历(EMR)是一项核心任务。传统主流方法多依赖于大规模语言模型(LLM)结合少量示例进行学习,然而,这些方法往往未能有效融入深度的医学专业知识,导致生成的EMR内容在专业性方面存在不足。针对这一挑战,提出了一种新颖的迭代反思框架,该框架融合了Error2Correct示例学习与领域模型监督,旨在提升EMR的总结质量。具体而言,首先设计了一种集成了Error2Correct示例学习机制的大规模语言模型,用于EMR的初步生成与持续优化,并在预生成阶段融入医学领域知识。然后利用一个经过微调的小规模医学预训练语言模型,对初步生成的EMR进行进一步的评估与优化,从而在后生成阶段再次深化领域知识的整合。最后,引入了一个迭代调度器,该调度器能够高效地引导模型在持续的反思与迭代过程中进行优化。实验结果显示,所提方法在两个公开的EMR数据集上均展现出了先进的性能。特别是在IMCS-V2-MRG和ACI-BENCH数据集上,与经过微调的大规模语言模型相比,所提方法分别实现了3.66个百分点和7.75个百分点的整体性能提升1)。
中图分类号:
[1]LIU Z J,WANG X L,CHEN Q C,et al.Temporal indexing of medical entity in Chinese clinical notes[J].BMC Medical Informatics and Decision Making,2019,19:1-11. [2]YU H Y,ZUO X L,TANG J T,et al.Identifying causal effects of the clinical sentiment of patients’ nursing notes on anticipated fall risk stratification[J].Information Processing & Mana-gement,2023,60(6):103481. [3]LU X T,SUN L P,LING C,et al.Named Entity Recognition of Chinese Electronic Health Records Incorporating Phonetic and Part-of-speech Features[J].Journal of Chinese Computer Systems,2025,46(2):330-338. [4]LIU S S,NIE W J,GAO D F,et al.Clinical quantitative information recognition and entity-quantity association from Chinese electronic medical records[J].International Journal of Machine Learning and Cybernetics,2021,12:117-130. [5]LEWIS M.Bart:Denoising sequence-to-sequence pre-training for natural language generation,translation,and comprehension[J].arXiv:1910.13461,2019. [6]RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].Journal of Machine Learning Research,2020,21(140):1-67. [7]NI H Q,LIU D,SHI M Y.Semantic-aware Chinese Short Text Summarization Model[J].Computer Science,2020,47(6):74-78. [8]XI T J,DUAN Z T,CAO J R,et al.Hybrid SummarizationMethod for Legal-Related Long Texts in Public Opinion Information[J].Journal of Chinese Information Processing,2024,38(7):63-72. [9]ZHANG L,NEGRINHO R,GHOSH A,et al.Leveraging pretrained models for automatic summarization of doctor-patient conversations[J].arXiv:2109.12174,2021. [10]KRISHNA K,KHOSLA S,BIGHAM J P,et al.GeneratingSOAP notes from doctor-patient conversations using modular summarization techniques[J].arXiv:2005.01795,2020. [11]JOSHI A,KATARIYA N,AMATRIAIN X,et al.Dr.summarize:Global summarization of medical dialogue by exploiting local structures[J].arXiv:2009.08666,2020. [12]MICHALOPOULOS G,WILLIAMS K,SINGH G,et al.MedicalSum:A guided clinical abstractive summarization model for generating medical reports from patient-doctor conversations[C]//Findings of the Association for Computational Linguistics:EMNLP 2022.2022:4741-4749. [13]LU G L,JU X L,CHEN X,et al.GRACE:Empowering LLM-based software vulnerability detection with graph structure and in-context learning[J].Journal of Systems and Software,2024,212:112031. [14]WANG L F,ZHAO M,JI H R,et al.Dialogue summarization enhanced response generation for multi-domain task-oriented dialogue systems[J].Information Processing & Management,2024,61(3):103668. [15]DU Z X,QIAN Y J,LIU X,et al.Glm:General language model pretraining with autoregressive blank infilling[J].arXiv:2103.10360,2021. [16]GIORGI J,TOMA A,XIE R,et al.Clinical note generation from doctor-patient conversations using large language models:Insights from mediqa-chat[J].arXiv:2305.02220,2023. [17]ZHOU W,WANG Z Y,WEI B.Generative Automatic Summarization Model for Legal Judgments[J].Computer Science,2021,48(12):331-336. [18]KONG Y L,WANG Z Q,WANG H L.Research on Comment Summarization Combined with Evaluation Object Information[J/OL].Computer Science,1-8[2024-10-16].http://kns.cnki.net/kcms/detail/50.1075.TP.20241012.0929.010.html. [19]GAO Y J,MILLER T,XU D F,et al.Summarizing patients’ problems from hospital progress notes using pre-trained sequence-to-sequence models[C]//Proceedings of COLING.International Conference on Computational Linguistics.NIH Public Access,2022:2979. [20]ENARVI S,AMOIA M,TEBA M D A,et al.Generating medical reports from patient-doctor conversations using sequence-to-sequence models[C]//Proceedings of the First Workshop on Natural Language Processing for Medical Conversations.2020:22-30. [21]SONG Y,TIAN Y H,WANG N,et al.Summarizing medicalconversations via identifying important utterances[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:717-729. [22]MICHALOPOULOS G,WILLIAMS K,SINGH G,et al.MedicalSum:A guided clinical abstractive summarization model for generating medical reports from patient-doctor conversations[C]//Findings of the Association forComputational Linguistics:EMNLP 2022.2022:4741-4749. [23]CAI P S,LIU F,BAJRACHARYA A,et al.Generation of patient after-visit summaries to support physicians[C]//Procee-dings of the 29th International Conference on Computational Linguistics(COLING).2022:6234-6247. [24]WU R S,WANG H L,WANG Z Q,et al.Short Text Summarization Method Based on Global Self-matching Mechanism[J].Journal of Software,2019,30(9):2705-2717. [25]HUANG Y X,YU Z T,GUO J J,et al.Case Topic Summarization Based on Topic Interaction Graph[J].Journal of Software,2023,34(4):1796-1810. [26]KRISHNA K,KHOSLA S,BIGHAM J P,et al.GeneratingSOAP notes from doctor-patient conversations using modular summarization techniques[J].arXiv:2005.01795,2020. [27]TANG X R,TRAN A,TAN J,et al.Gersteinlab at mediqa-chat 2023:Clinical note summarization from doctor-patient conversations through fine-tuning and in-context learning[J].arXiv:2305.05001,2023. [28]LONGPRE S,HOU L,VU T,et al.The flan collection:Designing data and methods for effective instruction tuning[C]//International Conference on Machine Learning.PMLR,2023:22631-22648. [29]NAIR V,SCHUMACHER E,KANNAN A.Generating medically-accurate summaries of patient-provider dialogue:A multi-stage approach using large language models[J].arXiv:2305.05982,2023. [30]VAN VEEN D,VAN UDEN C,BLANKEMEIER L,et al.Clinical text summarization:adapting large language models can outperform human experts[J].Research Square,2023,30(4):1134-1142. [31]DETTMERS T,PAGNONI A,HOLTZMAN A,et al.QLORA:Efficient finetuning of quantized LLMs[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc.,2023:10088-10115. [32]LYU X,MIN S,BELTAGY I,et al.Z-icl:Zero-shot in-context learning with pseudo-demonstrations[J].arXiv:2212.09865,2022. [33]OUYANG L,WU J,JIANG X,et al.Training language models to follow instructions with human feedback[J].Advances in Neural Information Processing Systems,2022,35:27730-27744. [34]CHEN W,LI Z W,FANG H Y,et al.A benchmark for automatic medical consultation system:frameworks,tasks and datasets[J].Bioinformatics,2023,39(1):817. [35]YIM W,FU Y,BEN ABACHA A,et al.Aci-bench:a novel ambient clinical intelligence datasetfor benchmarking automatic visit note generation[J].Scientific Data,2023,10(1):586. [36]WANG Q,DAI S T,XU B F,et al.Building chinese biomedical language models via multi-level text discrimination[J].arXiv:2110.07244,2021. [37]ZHANG J X,GAN R,WANG J J,et al.Fengshenbang 1.0:Being the foundation of chinese cognitive intelligence[J].arXiv:2209.02970,2022. [38]WANG Y,ZHANG Z,WANG R.Element-aware summarization with large language models:Expert-aligned evaluation and chain-of-thought method[J].arXiv:2305.13412,2023. [39]YUAN H M,YUAN Z S,GAN R,et al.BioBART:Pretraining and evaluation of a biomedical generative language model[J].arXiv:2204.03905,2022. [40]COHAN A,DERNONCOURT F,KIM D S,et al.A discourse-aware attention model for abstractive summarization of long documents[J].arXiv:1804.05685,2018. [41]GLIWA B,MOCHOL I,BIESEK M,et al.SAMSum corpus:A human-annotated dialogue dataset for abstractive summarization[J].arXiv:1911.12237,2019. [42]ZHENG L M,CHIANG W L,SHENG Y,et al.Judging llm-as-a-judge with mt-bench and chatbot arena[J].Advances in Neural Information Processing Systems,2023,36:46595-46623. [43]RIBEIRO L F R,BANSAL M,DREYER M.Generating summaries with controllable readability levels[J].arXiv:2310.10623,2023. |
|