计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 4-13.doi: 10.11896/jsjkx.241000138

• 智能嵌入式系统 • 上一篇    下一篇

信息物理系统的传感器攻击抵御策略综述

陈彦峰1, 冯智伟2, 邓庆绪2, 王妍1   

  1. 1 辽宁大学网络与信息安全学院 沈阳 110036
    2 东北大学计算机科学与工程学院 沈阳 110167
  • 收稿日期:2024-10-28 修回日期:2025-02-14 出版日期:2025-04-15 发布日期:2025-04-14
  • 通讯作者: 王妍(wang_yan@lnu.edu.cn)
  • 作者简介:(yfchen@lnu.edu.cn)
  • 基金资助:
    辽宁省科技计划联合计划(自然科学基金-博士科研启动项目)(2024-BSLH-108)

Survey of Sensor Attack Defense Strategies for Cyber Physical Systems

CHEN Yanfeng1, FENG Zhiwei2, DENG Qingxu2, WANG Yan1   

  1. 1 School of Cyber Science and Engineering,Liaoning University,Shenyang 110036,China
    2 College of Computer Science and Engineering,Northeastern University,Shenyang 110167,China
  • Received:2024-10-28 Revised:2025-02-14 Online:2025-04-15 Published:2025-04-14
  • About author:CHEN Yanfeng,born in 1992,Ph.D,is a member of CCF(No.T9340G).His main research interests include cyber-physical system,sensor fusion,and sensor attack-resilience.
    WANG Yan,born in 1978,Ph.D,professor,Ph.D supervisor,is a member of CCF(No.18011M).Her main research interests include big data analysis,block-chain and artificial intelligence.
  • Supported by:
    Liaoning Province Science and Technology Plan Joint Plan(2024-BSLH-108).

摘要: 信息物理系统(Cyber Physical System,CPS)作为融合了计算、通信和控制的智能系统,在诸多领域,如智能交通、智能健康等方面发挥着越来越重要的作用。传感器在CPS中扮演着重要角色,但也常成为攻击者的目标。首先,明确了传感器攻击抵御的研究范围,按照攻击发生时间点,将传感器攻击的相关研究分为了攻击防御、攻击抵御和攻击恢复。然后,回顾了常见传感器攻击的类型和影响,包括拒绝服务攻击、重放攻击、欺骗攻击等。接着,总结了基于多源一致性、历史一致性和响应一致性的传感器攻击检测方法。随后,论述了攻击检测后的数据融合方法,包括基于卡尔曼滤波和基于间隔的数据融合方法。最后,探讨了未来可能的研究方向,以进一步加强CPS中传感器攻击的防御能力。

关键词: 信息物理系统, 传感器攻击, 攻击抵御, 攻击检测, 数据融合, 数据安全

Abstract: Cyber-physical system(CPS),as an intelligent system integrating computation,communication and control,plays an increasingly important role in various fields such as intelligent transportation and healthcare.Sensors play a crucial role in CPS but are also commonly targeted by attackers.Firstly,the scope of research on sensor attack defense is clarified,and the relevant stu-dies on sensor attacks are categorized into attack prevention,defense and recovery according to the timing of attack occurrence.Next,the types and impacts of sensor attacks are reviewed,including DoS attacks,replay attacks and deception attacks.Then,sensor attack detection methods based on multi-source consistency,historical consistency and response consistency are summarized.Subsequently,data fusion methods after attack detection are discussed,including Kalman filter-based and interval-based data fusion methods.Finally,potential future research directions are explored to further enhance the defense capabilities against sensor attacks in CPS.

Key words: Cyber physical system, Sensor attack, Attack defense, Attack detection, Data fusion, Data security

中图分类号: 

  • TP399
[1]KONG F,XU M,WEIMER J,et al.Cyber-physical system checkpointing and recovery [C]//2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems(ICCPS).IEEE,2018:22-31.
[2]KONG F,SOKOLSKY O,WEIMER J,et al.State consistencies for cyber-physical system recovery [C]//the 2nd Workshop on Cyber-Physical Systems Security and Resilience(CPSSR).2019:3-7.
[3]GIRALDO J,URBINA D,CARDENAS A,et al.A survey ofphysics-based attack detection in cyber-physical systems [J].ACM Computing Surveys(CSUR),2018,51(4):1-36.
[4]FENG S,LI X,ZHANG S,et al.A review:State estimation based on hybrid models of Kalman filter and neural network[J].Systems Science & Control Engineering,2023,11(1):2173682.
[5]WEI H,TANG H,JIA X,et al.Physical adversarial attackmeets computer vision:A decade survey[J].arXiv:2209.15179v3,2022.
[6]JU Z,ZHANG H,LI X,et al.A survey on attack detection and resilience for connected and automated vehicles:From vehicle dynamics and control perspective[J].IEEE Transactions on Intelligent Vehicles,2022,7(4):815-837.
[7]PARK P,COLERI ERGEN S,FISCHIONE C,et al.Wireless network design for control systems:A survey[J].IEEE Communications Surveys & Tutorials,2018,20(2):978-1013.
[8]AGHILI S F,ASHOURI-TALOUKI M,MALA H.Dos,impersonation and desynchronization attacks against an ultra-lightweight rfid mutual authentication protocol for iot [J].The Journal of Supercomputing,2018,74(1):509-525.
[9]SHANG J,CHEN M,CHEN T.Optimal linear encryptionagainst stealthy attacks on remote state estimation [J].IEEE Transactions on Automatic Control,2020,66(8):3592-3607.
[10]SHOUKRY Y,MARTIN P,YONA Y,et al.Pycra:Physicalchallenge-response authentication for active sensors under spoofing attacks [C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.2015:1004-1015.
[11]XIONG W,LAGERSTRÖM R.Threat modeling-a systematicliterature review[J].Computers & Security,2019,84:53-69.
[12]MAHMOUD M S,HAMDAN M M,BAROUDI U A.Modeling and control of cyber physical systems subject to cyber attacks:A survey of recent advances and challenges[J].Neurocomputing,2019,338:101-115.
[13]PAJIC M,WEIMER J,BEZZO N,et al.Robustness of attack-resilient state estimators[C]//2014 ACM/IEEE International Conference on Cyber-Physical Systems(ICCPS).2014.
[14]ZHANG L,CHEN X,KONG F,et al.Real-time attack-recovery for cyber-physical systems using linear approximations[C]//2020 IEEE Real-Time Systems Symposium(RTSS).IEEE,2020:205-217.
[15]ZHANG L,SRIDHAR K,LIU M,et al.Real-time data-predictive attack-recovery for complex cyber-physical systems[C]//2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium(RTAS).IEEE,2023:209-222.
[16]KHAN M A,ULLAH I,ALKHALIFAH A,et al.A provable and privacy-preserving authentication scheme for uav-enabled intelligent transportation systems[J].IEEE Transactions on Industrial Informatics,2021,18(5):3416-3425.
[17]AGHILI S F,ASHOURI-TALOUKI M,MALA H.Dos,impersonation and desynchronization attacks against an ultra-lightweight rfid mutual authentication protocol for iot [J].The Journal of Supercomputing,2018,74(1):509-525.
[18]SHOUKRY Y,MARTIN P,YONA Y,et al.Pycra:Physicalchallenge-response authentication for active sensors under spoofing attacks[C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.2015:1004-1015.
[19]SODHROA H,AWADA I,VAN DE BEEK J,et al.Intelligent authentication of 5g healthcare devices:A survey[J].Internet of Things,2022,20:100610.
[20]BAI Y,ZHENG K,WANG Z,et al.Dynamic channel selection for real-time safety message communication in vehicular networks[C]//2018 IEEE Real-Time Systems Symposium(RTSS).IEEE,2018:56-66.
[21]SHANG J,CHEN M,CHEN T.Optimal linear encryptionagainst stealthy attacks on remote state estimation[J].IEEE Transactions on Automatic Control,2020,66(8):3592-3607.
[22]LIAN J,HUANG X.Resilient control of networked switchedsystems against dos attack[J].IEEE Transactions on Industrial Informatics,2021,18(4):2354-2363.
[23]ZHANG J,SUN J,LIN H.Optimal dos attack schedules on remote state estimation under multi-sensor round-robin protocol[J].Automatica,2021,127:109517.
[24]TAHOUN A H,ARAFA M.Cooperative control for cyber-physical multi-agent networked control systems with unknown false data-injection and replay cyber-attacks[J].ISA transactions,2021,110:1-14.
[25]ZAMAN A,SAFARINEJADIAN B,BIRK W.Security analysis and fault detection against stealthy replay attacks[J].International Journal of Control,2022,95(6):1562-1575.
[26]KHARE G,MOHAPATRA A,SINGH S N.State vulnerability assessment against false data injection attacks in ac state estimators[J].Energy Conversion and Economics,2022,3(5):319-332.
[27]REDA H T,ANWAR A,MAHMOOD A N,et al.A taxonomy of cyber defence strategies against false data attacks in smart grids[J].ACM Computing Surveys,2023,55(14s):1-37.
[28]GHEITASI K,LUCIA W.Undetectable finite-time covert at-tack on constrained cyberphysical systems[J].IEEE Transactions on Control of Network Systems,2022,9(2):1040-1048.
[29]JORJANI M,SEIFI H,VARJANI A Y.A graph theory-based approach to detect false data injection attacks in power system ac state estimation[J].IEEE Transactions on Industrial Informatics,2020,17(4):2465-2475.
[30]TIAN J,WANG B,WANG Z,et al.Joint adversarial exampleand false data injection attacks for state estimation in power systems[J].IEEE Transactions on Cybernetics,2021,52(12):13699-13713.
[31]AOUFI S,DERHAB A,GUERROUMI M.Survey of false data injection in smart power grid:Attacks,countermeasures and challenges[J].Journal of Information Security and Applications,2020,54:102518.
[32]SENGAN S,SUBRAMANIYASWAMY V,INDRAGANDHI V,et al.Detection of false data cyber-attacks for the assessment of security in smart grid using deep learning[J].Computers & Electrical Engineering,2021,93:107211.
[33]SHINOHARA T,NAMERIKAWA T.Distributed secure stateestimation with a priori sparsity information[J].IET Control Theory & Applications,2022,16(11):1086-1097.
[34]FAWZI H,TABUADAP,DIGGAVI S.Security for control systems under sensor and actuator attacks[M]//2012 IEEE 51st IEEE Conference on Decision and Control(CDC).IEEE,2012:3412-3417.
[35]TSAI T,YANG K,HO T Y,et al.Robust adversarial objects against deep learning models[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020.
[36]MERDRIGNAC P,SHAGDAR O,NASHASHIBI F,et al.Fu-sion of perception and v2p communication systems for the safety of vulnerable road users[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(7):1740-1751.
[37]MARZULLO K.Tolerating failures of continuous-valued sen-sors[J].ACM Transactions on Computer Systems,1990,8(4):284-304.
[38]IVANOV R,PAJIC M,LEE I.Attack-resilient sensor fusion for safety-critical cyber-physical systems [J].ACM Transactions in Embedded Computing Systems,2016,15(1):21.
[39]JO M,PARK J,BAEK Y,et al.Adaptive transient fault model for sensor attack detection [C]//IEEE International Conference on Cyber-physical Systems.2016.
[40]LU P,ZHANG L,PARK B B,et al.Attack-resilient sensor fusion for cooperative adaptive cruise control[C]//2018 21st International Conference on Intelligent Transportation Systems(ITSC).2018:3955-3960.
[41]PARK J,IVANOV R,WEIMER J,et al.Security of cyber-phy-sical systems in the presence of transient sensor faults[J].ACM Transactions on Cyber-Physical Systems,2017,1(3):1-23.
[42]ZHANG L,WANG Z,LIU M,et al.Adaptive window-basedsensor attack detection for cyberphysical systems[C]//Procee-dings of the 59th ACM/IEEE Design Automation Confe-rence.2022:919-924.
[43]AKOWUAH F,KONG F.Real-time adaptive sensor attack detection in autonomous cyberphysical systems[C]//2021 IEEE 27th Real-time and Embedded Technology and Applications Symposium(RTAS).IEEE,2021:237-250.
[44]ZHU F,TANG Y,WANG Z.Interval-observer-based fault detection and isolation design for ts fuzzy system based on zonotope analysis[J].IEEE Transactions on Fuzzy Systems,2021,30(4):945-955.
[45]DEGUE K H,LE NY J,EFIMOV D.Stealthy attacks and attack-resilient interval observers [J].Automatica,2022,146:110558.
[46]RAVI A,NARASIMHAN S,KAISARE N S.Sampled outputaugmentation method for handling measurement delays in multi-rate kalman filter[J].Chemical Engineering Science,2020,224:115763.
[47]DORIGONI D,FONTANELLI D.An uncertainty-driven analysis for delayed mapping slam[C]//2021 IEEE International Instrumentation and Measurement Technology Conference(I2MTC).2021:1-6.
[48]KOLEY I,ADHIKARY S,DEY S.Catch me if you learn:Real-time attack detection and mitigation in learning enabled cps[C]//2021 IEEE Real-Time Systems Symposium(RTSS).IEEE,2021:136-148.
[49]LV Y,LU J,LIU Y,et al.Resilient distributed state estimation under stealthy attack[J].IEEE Transactions on Information Forensics and Security,2022,17:3254-3263.
[50]LIU M,ZHANG L,LU P,et al.Fail-safe:Securing cyber-physi-cal systems against hidden sensor attacks[C]//2022 IEEE Real-Time Systems Symposium(RTSS).IEEE,2022:240-252.
[51]KO W H,SATCHIDANANDAN B,KUMAR P.Dynamic watermarking-based defense of transportation cyber-physical systems[J].ACM Transactions on Cyber-Physical Systems,2019,4(1):1-21.
[52]SATCHIDANANDAN B,KUMAR P R.Dynamic watermar-king:Active defense of networked cyber-physical systems[C]//Proceedings of the IEEE.2016:219-240.
[53]RUBIO-HERNAN J,DE CICCO L,GARCIA-ALFARO J.On the use of watermark-based schemes to detect cyber-physical attacks[J].EURASIP Journal on Information Security,2017,2017(1):1-25.
[54]FANG C,QI Y,CHENG P,et al.Optimal periodic watermarking schedule for replay attack detection in cyber-physical systems[J].Automatica,2020,112:108698.
[55]LIU H,ZHANG Y,LI Y,et al.Proactive attack detectionscheme based on watermarking and moving target defense[J].Automatica,2023,155:111163.
[56]LIU H,LI Y,HAN Q L,et al.Watermark-based proactive defense strategy design for cyber physical systems with unknown-but-bounded noises[J].IEEE Transactions on Automatic Control,2023,68(6):3300-3315.
[57]TU Y J,PIRAMUTHU S.On addressing rfid/nfc-based relayattacks:An overview [J].Decision Support Systems,2020,129:113194.
[58]KHALAJMEHRABADI A,GATSIS N,AKOPIAN D,et al.Real-time rejection and mitigation of time synchronization attacks on the global positioning system[J].IEEE Transactions on Industrial Electronics,2018,65(8):6425-6435.
[59]PU W,LIU Y F,YAN J,et al.Optimal estimation of sensor biases for asynchronous multi-sensor data fusion[J].Mathematical Programming,2018,170:357-386.
[60]LIN H,SUN S.Distributed fusion estimator for multi-sensor asynchronous sampling systems with missing measurements[J].IET Signal Processing,2016,10(7):724-731.
[61]CABALLERO-ÁGUILA R,GARCÍA-GARRIDO I,LINARES-PÉREZ J.Information fusion algorithms for state estimation in multi-sensor systems with correlated missing measurements[J].Applied Mathematics and Computation,2014,226:548-563.
[62]TANG W,WANG Z,WANG Y,et al.Interval estimation methods for discrete-time linear time-invariant systems[J].IEEE Transactions on Automatic Control,2019,64(11):4717-4724.
[63]HE N,SHI D,CHEN T.Self-triggered model predictive control for networked control systems based on first-order hold[J].International Journal of Robust and Nonlinear Control,2018,28(4):1303-1318.
[64]BAI C Z,GUPTA V,PASQUALETTI F.On kalman filtering with compromised sensors:Attack stealthiness and performance bounds[J].IEEE Transactions on Automatic Control,2017,62(12):6641-6648.
[65]MUELLER M W,HAMER M,D’ANDREA R.Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation[C]//2015 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2015:1730-1736.
[66]CORRALES J A,CANDELAS F A,TORRES F.Hybrid trac-king of human operators using imu/uwb data fusion by a kalman filter[C]//Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction.2008:193-200.
[67]WANG J,ZHANG B,GAO S,et al.A data fusion algorithm of the improved bp neural network by particle swarm optimization[C]//2021 CAA Symposium on Fault Detection,Supervision,and Safety for Technical Processes(SAFEPROCESS).2021:1-8.
[68]KARAFYLLIS I,KRSTIC M.Nonlinear stabilization undersampled and delayed measurements,and with inputs subject to delay and zero-order hold[J].IEEE Transactions on Automatic Control,2011,57(5):1141-1154.
[69]LI G,YI W,LI S,et al.Asynchronous multi-rate multi-sensorfusion based on random finite set[J].Signal Processing,2019,160:113-126.
[70]GIRBÉS-JUAN V,ARMESTO L,HERNÁNDEZ-FERRÁNDIZ D,et al.Asynchronous sensor fusion of gps,imu and can-based odometry for heavy-duty vehicles[J].IEEE Transactions on Vehicular Technology,2021,70(9):8617-8626.
[71]YU B,HU W,XU L,et al.Building the computing system for autonomous micromobility vehicles:Design constraints and architectural optimizations[C]//2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture.IEEE,2020:1067-1081.
[72]SKOG I,HANDEL P.Time synchronization errors in looselycoupled gps-aided inertial navigation systems[J].IEEE Tran-sactions on Intelligent Transportation Systems,2011,12(4):1014-1023.
[73]TANG W,WANG Z,ZHANG Q,et al.Set-membership estimation for linear time-varying descriptor systems[J].Automatica,2020,115:108867.
[74]HUANG J,CHE H,RAÏSSI T,et al.Functional interval ob-server for discrete-time switched descriptor systems[J].IEEE Transactions on Automatic Control,2021,67(5):2497-2504.
[75]GUO S,REN W,AHN C K,et al.Reachability analysis-basedinterval estimation for discretetime takagi-sugeno fuzzy systems[J].IEEE Transactions on Fuzzy Systems,2021,30(6):1981-1992.
[76]VEIBÄCK C,HENDEBY G,GUSTAFSSON F.Uncertain timestamps in linear state estimation[J].IEEE Transactions on Ae-rospace and Electronic Systems,2018,55(3):1334-1346.
[77]VEIBÁCK C,HENDEBY G,GUSTAFSSON F.On fusion ofsensor measurements and observation with uncertain timestamp for target tracking[C]//2016 19th International Conference on Information Fusion.IEEE,2016:1268-1275.
[78]LI B,XIAO G,LU R,et al.On feasibility and limitations of detecting false data injection attacks on power grid state estimation using d-facts devices[J].IEEE Transactions on Industrial Informatics,2020,16(2):854-864.
[79]ZHAO D,DING S X,KARIMI H R,et al.Robust 1 filtering for two-dimensional uncertain linear discrete time-varying systems:A krein space-based method[J].IEEE Transactions on Automatic Control,2019,64(12):5124-5131.
[80]WANG Y,LIU Y,FUJIMOTO H,et al.Vision-based lateralstate estimation for integrated control of automated vehicles considering multi-rate and unevenly delayed measurements[J].IEEE/ASME Transactions on Mechatronics,2018,23(6):2619-2627.
[81]FAWZI H,TABUADA P,DIGGAVI S.Secure estimation andcontrol for cyber-physical systems under adversarial attacks [J].IEEE Transactions on Automatic Control,2014,59(6):1454-1467.
[82]CHONG M S,WAKAIKI M,HESPANHA J P.Observability of linear systems under adversarial attacks [C]//2015 American Control Conference(ACC).IEEE,2015:2439-2444.
[83]ZHOU S,LIU C,YE D,et al.Adversarial attacks and defenses in deep learning:From a perspective of cybersecurity[J].ACM Computing Surveys,2022,55(8):1-39.
[84]HUANG H,CHEN Z,CHEN H,et al.T-sea:Transfer-basedself-ensemble attack on object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:20514-20523.
[85]NESTI F,ROSSOLINI G,NAIR S,et al.Evaluating the robustness of semantic segmentation for autonomous driving against real-world adversarial patch attacks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:2280-2289.
[86]WANG J,WANG C,LIN Q,et al.Adversarial attacks and defenses in deep learning for image recognition:A survey[J].Neurocomputing,2022,514:162-181.
[87]MUHAMMAD F,ANJUM W,MAZHAR K S.A critical analysis on the security concerns of internet of things(iot) [J].International Journal of Computer Applications,2015,111(7):1-6.
[88]SUN J,CAO Y,CHEN Q A,et al.Towards Robust LiDAR-based Perception in Autonomous Driving:General Black-box Adversarial Sensor Attack and Countermeasures[J].arXiv:2006.16974,2020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!