计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 4-13.doi: 10.11896/jsjkx.241000138
陈彦峰1, 冯智伟2, 邓庆绪2, 王妍1
CHEN Yanfeng1, FENG Zhiwei2, DENG Qingxu2, WANG Yan1
摘要: 信息物理系统(Cyber Physical System,CPS)作为融合了计算、通信和控制的智能系统,在诸多领域,如智能交通、智能健康等方面发挥着越来越重要的作用。传感器在CPS中扮演着重要角色,但也常成为攻击者的目标。首先,明确了传感器攻击抵御的研究范围,按照攻击发生时间点,将传感器攻击的相关研究分为了攻击防御、攻击抵御和攻击恢复。然后,回顾了常见传感器攻击的类型和影响,包括拒绝服务攻击、重放攻击、欺骗攻击等。接着,总结了基于多源一致性、历史一致性和响应一致性的传感器攻击检测方法。随后,论述了攻击检测后的数据融合方法,包括基于卡尔曼滤波和基于间隔的数据融合方法。最后,探讨了未来可能的研究方向,以进一步加强CPS中传感器攻击的防御能力。
中图分类号:
[1]KONG F,XU M,WEIMER J,et al.Cyber-physical system checkpointing and recovery [C]//2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems(ICCPS).IEEE,2018:22-31. [2]KONG F,SOKOLSKY O,WEIMER J,et al.State consistencies for cyber-physical system recovery [C]//the 2nd Workshop on Cyber-Physical Systems Security and Resilience(CPSSR).2019:3-7. [3]GIRALDO J,URBINA D,CARDENAS A,et al.A survey ofphysics-based attack detection in cyber-physical systems [J].ACM Computing Surveys(CSUR),2018,51(4):1-36. [4]FENG S,LI X,ZHANG S,et al.A review:State estimation based on hybrid models of Kalman filter and neural network[J].Systems Science & Control Engineering,2023,11(1):2173682. [5]WEI H,TANG H,JIA X,et al.Physical adversarial attackmeets computer vision:A decade survey[J].arXiv:2209.15179v3,2022. [6]JU Z,ZHANG H,LI X,et al.A survey on attack detection and resilience for connected and automated vehicles:From vehicle dynamics and control perspective[J].IEEE Transactions on Intelligent Vehicles,2022,7(4):815-837. [7]PARK P,COLERI ERGEN S,FISCHIONE C,et al.Wireless network design for control systems:A survey[J].IEEE Communications Surveys & Tutorials,2018,20(2):978-1013. [8]AGHILI S F,ASHOURI-TALOUKI M,MALA H.Dos,impersonation and desynchronization attacks against an ultra-lightweight rfid mutual authentication protocol for iot [J].The Journal of Supercomputing,2018,74(1):509-525. [9]SHANG J,CHEN M,CHEN T.Optimal linear encryptionagainst stealthy attacks on remote state estimation [J].IEEE Transactions on Automatic Control,2020,66(8):3592-3607. [10]SHOUKRY Y,MARTIN P,YONA Y,et al.Pycra:Physicalchallenge-response authentication for active sensors under spoofing attacks [C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.2015:1004-1015. [11]XIONG W,LAGERSTRÖM R.Threat modeling-a systematicliterature review[J].Computers & Security,2019,84:53-69. [12]MAHMOUD M S,HAMDAN M M,BAROUDI U A.Modeling and control of cyber physical systems subject to cyber attacks:A survey of recent advances and challenges[J].Neurocomputing,2019,338:101-115. [13]PAJIC M,WEIMER J,BEZZO N,et al.Robustness of attack-resilient state estimators[C]//2014 ACM/IEEE International Conference on Cyber-Physical Systems(ICCPS).2014. [14]ZHANG L,CHEN X,KONG F,et al.Real-time attack-recovery for cyber-physical systems using linear approximations[C]//2020 IEEE Real-Time Systems Symposium(RTSS).IEEE,2020:205-217. [15]ZHANG L,SRIDHAR K,LIU M,et al.Real-time data-predictive attack-recovery for complex cyber-physical systems[C]//2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium(RTAS).IEEE,2023:209-222. [16]KHAN M A,ULLAH I,ALKHALIFAH A,et al.A provable and privacy-preserving authentication scheme for uav-enabled intelligent transportation systems[J].IEEE Transactions on Industrial Informatics,2021,18(5):3416-3425. [17]AGHILI S F,ASHOURI-TALOUKI M,MALA H.Dos,impersonation and desynchronization attacks against an ultra-lightweight rfid mutual authentication protocol for iot [J].The Journal of Supercomputing,2018,74(1):509-525. [18]SHOUKRY Y,MARTIN P,YONA Y,et al.Pycra:Physicalchallenge-response authentication for active sensors under spoofing attacks[C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.2015:1004-1015. [19]SODHROA H,AWADA I,VAN DE BEEK J,et al.Intelligent authentication of 5g healthcare devices:A survey[J].Internet of Things,2022,20:100610. [20]BAI Y,ZHENG K,WANG Z,et al.Dynamic channel selection for real-time safety message communication in vehicular networks[C]//2018 IEEE Real-Time Systems Symposium(RTSS).IEEE,2018:56-66. [21]SHANG J,CHEN M,CHEN T.Optimal linear encryptionagainst stealthy attacks on remote state estimation[J].IEEE Transactions on Automatic Control,2020,66(8):3592-3607. [22]LIAN J,HUANG X.Resilient control of networked switchedsystems against dos attack[J].IEEE Transactions on Industrial Informatics,2021,18(4):2354-2363. [23]ZHANG J,SUN J,LIN H.Optimal dos attack schedules on remote state estimation under multi-sensor round-robin protocol[J].Automatica,2021,127:109517. [24]TAHOUN A H,ARAFA M.Cooperative control for cyber-physical multi-agent networked control systems with unknown false data-injection and replay cyber-attacks[J].ISA transactions,2021,110:1-14. [25]ZAMAN A,SAFARINEJADIAN B,BIRK W.Security analysis and fault detection against stealthy replay attacks[J].International Journal of Control,2022,95(6):1562-1575. [26]KHARE G,MOHAPATRA A,SINGH S N.State vulnerability assessment against false data injection attacks in ac state estimators[J].Energy Conversion and Economics,2022,3(5):319-332. [27]REDA H T,ANWAR A,MAHMOOD A N,et al.A taxonomy of cyber defence strategies against false data attacks in smart grids[J].ACM Computing Surveys,2023,55(14s):1-37. [28]GHEITASI K,LUCIA W.Undetectable finite-time covert at-tack on constrained cyberphysical systems[J].IEEE Transactions on Control of Network Systems,2022,9(2):1040-1048. [29]JORJANI M,SEIFI H,VARJANI A Y.A graph theory-based approach to detect false data injection attacks in power system ac state estimation[J].IEEE Transactions on Industrial Informatics,2020,17(4):2465-2475. [30]TIAN J,WANG B,WANG Z,et al.Joint adversarial exampleand false data injection attacks for state estimation in power systems[J].IEEE Transactions on Cybernetics,2021,52(12):13699-13713. [31]AOUFI S,DERHAB A,GUERROUMI M.Survey of false data injection in smart power grid:Attacks,countermeasures and challenges[J].Journal of Information Security and Applications,2020,54:102518. [32]SENGAN S,SUBRAMANIYASWAMY V,INDRAGANDHI V,et al.Detection of false data cyber-attacks for the assessment of security in smart grid using deep learning[J].Computers & Electrical Engineering,2021,93:107211. [33]SHINOHARA T,NAMERIKAWA T.Distributed secure stateestimation with a priori sparsity information[J].IET Control Theory & Applications,2022,16(11):1086-1097. [34]FAWZI H,TABUADAP,DIGGAVI S.Security for control systems under sensor and actuator attacks[M]//2012 IEEE 51st IEEE Conference on Decision and Control(CDC).IEEE,2012:3412-3417. [35]TSAI T,YANG K,HO T Y,et al.Robust adversarial objects against deep learning models[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020. [36]MERDRIGNAC P,SHAGDAR O,NASHASHIBI F,et al.Fu-sion of perception and v2p communication systems for the safety of vulnerable road users[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(7):1740-1751. [37]MARZULLO K.Tolerating failures of continuous-valued sen-sors[J].ACM Transactions on Computer Systems,1990,8(4):284-304. [38]IVANOV R,PAJIC M,LEE I.Attack-resilient sensor fusion for safety-critical cyber-physical systems [J].ACM Transactions in Embedded Computing Systems,2016,15(1):21. [39]JO M,PARK J,BAEK Y,et al.Adaptive transient fault model for sensor attack detection [C]//IEEE International Conference on Cyber-physical Systems.2016. [40]LU P,ZHANG L,PARK B B,et al.Attack-resilient sensor fusion for cooperative adaptive cruise control[C]//2018 21st International Conference on Intelligent Transportation Systems(ITSC).2018:3955-3960. [41]PARK J,IVANOV R,WEIMER J,et al.Security of cyber-phy-sical systems in the presence of transient sensor faults[J].ACM Transactions on Cyber-Physical Systems,2017,1(3):1-23. [42]ZHANG L,WANG Z,LIU M,et al.Adaptive window-basedsensor attack detection for cyberphysical systems[C]//Procee-dings of the 59th ACM/IEEE Design Automation Confe-rence.2022:919-924. [43]AKOWUAH F,KONG F.Real-time adaptive sensor attack detection in autonomous cyberphysical systems[C]//2021 IEEE 27th Real-time and Embedded Technology and Applications Symposium(RTAS).IEEE,2021:237-250. [44]ZHU F,TANG Y,WANG Z.Interval-observer-based fault detection and isolation design for ts fuzzy system based on zonotope analysis[J].IEEE Transactions on Fuzzy Systems,2021,30(4):945-955. [45]DEGUE K H,LE NY J,EFIMOV D.Stealthy attacks and attack-resilient interval observers [J].Automatica,2022,146:110558. [46]RAVI A,NARASIMHAN S,KAISARE N S.Sampled outputaugmentation method for handling measurement delays in multi-rate kalman filter[J].Chemical Engineering Science,2020,224:115763. [47]DORIGONI D,FONTANELLI D.An uncertainty-driven analysis for delayed mapping slam[C]//2021 IEEE International Instrumentation and Measurement Technology Conference(I2MTC).2021:1-6. [48]KOLEY I,ADHIKARY S,DEY S.Catch me if you learn:Real-time attack detection and mitigation in learning enabled cps[C]//2021 IEEE Real-Time Systems Symposium(RTSS).IEEE,2021:136-148. [49]LV Y,LU J,LIU Y,et al.Resilient distributed state estimation under stealthy attack[J].IEEE Transactions on Information Forensics and Security,2022,17:3254-3263. [50]LIU M,ZHANG L,LU P,et al.Fail-safe:Securing cyber-physi-cal systems against hidden sensor attacks[C]//2022 IEEE Real-Time Systems Symposium(RTSS).IEEE,2022:240-252. [51]KO W H,SATCHIDANANDAN B,KUMAR P.Dynamic watermarking-based defense of transportation cyber-physical systems[J].ACM Transactions on Cyber-Physical Systems,2019,4(1):1-21. [52]SATCHIDANANDAN B,KUMAR P R.Dynamic watermar-king:Active defense of networked cyber-physical systems[C]//Proceedings of the IEEE.2016:219-240. [53]RUBIO-HERNAN J,DE CICCO L,GARCIA-ALFARO J.On the use of watermark-based schemes to detect cyber-physical attacks[J].EURASIP Journal on Information Security,2017,2017(1):1-25. [54]FANG C,QI Y,CHENG P,et al.Optimal periodic watermarking schedule for replay attack detection in cyber-physical systems[J].Automatica,2020,112:108698. [55]LIU H,ZHANG Y,LI Y,et al.Proactive attack detectionscheme based on watermarking and moving target defense[J].Automatica,2023,155:111163. [56]LIU H,LI Y,HAN Q L,et al.Watermark-based proactive defense strategy design for cyber physical systems with unknown-but-bounded noises[J].IEEE Transactions on Automatic Control,2023,68(6):3300-3315. [57]TU Y J,PIRAMUTHU S.On addressing rfid/nfc-based relayattacks:An overview [J].Decision Support Systems,2020,129:113194. [58]KHALAJMEHRABADI A,GATSIS N,AKOPIAN D,et al.Real-time rejection and mitigation of time synchronization attacks on the global positioning system[J].IEEE Transactions on Industrial Electronics,2018,65(8):6425-6435. [59]PU W,LIU Y F,YAN J,et al.Optimal estimation of sensor biases for asynchronous multi-sensor data fusion[J].Mathematical Programming,2018,170:357-386. [60]LIN H,SUN S.Distributed fusion estimator for multi-sensor asynchronous sampling systems with missing measurements[J].IET Signal Processing,2016,10(7):724-731. [61]CABALLERO-ÁGUILA R,GARCÍA-GARRIDO I,LINARES-PÉREZ J.Information fusion algorithms for state estimation in multi-sensor systems with correlated missing measurements[J].Applied Mathematics and Computation,2014,226:548-563. [62]TANG W,WANG Z,WANG Y,et al.Interval estimation methods for discrete-time linear time-invariant systems[J].IEEE Transactions on Automatic Control,2019,64(11):4717-4724. [63]HE N,SHI D,CHEN T.Self-triggered model predictive control for networked control systems based on first-order hold[J].International Journal of Robust and Nonlinear Control,2018,28(4):1303-1318. [64]BAI C Z,GUPTA V,PASQUALETTI F.On kalman filtering with compromised sensors:Attack stealthiness and performance bounds[J].IEEE Transactions on Automatic Control,2017,62(12):6641-6648. [65]MUELLER M W,HAMER M,D’ANDREA R.Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation[C]//2015 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2015:1730-1736. [66]CORRALES J A,CANDELAS F A,TORRES F.Hybrid trac-king of human operators using imu/uwb data fusion by a kalman filter[C]//Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction.2008:193-200. [67]WANG J,ZHANG B,GAO S,et al.A data fusion algorithm of the improved bp neural network by particle swarm optimization[C]//2021 CAA Symposium on Fault Detection,Supervision,and Safety for Technical Processes(SAFEPROCESS).2021:1-8. [68]KARAFYLLIS I,KRSTIC M.Nonlinear stabilization undersampled and delayed measurements,and with inputs subject to delay and zero-order hold[J].IEEE Transactions on Automatic Control,2011,57(5):1141-1154. [69]LI G,YI W,LI S,et al.Asynchronous multi-rate multi-sensorfusion based on random finite set[J].Signal Processing,2019,160:113-126. [70]GIRBÉS-JUAN V,ARMESTO L,HERNÁNDEZ-FERRÁNDIZ D,et al.Asynchronous sensor fusion of gps,imu and can-based odometry for heavy-duty vehicles[J].IEEE Transactions on Vehicular Technology,2021,70(9):8617-8626. [71]YU B,HU W,XU L,et al.Building the computing system for autonomous micromobility vehicles:Design constraints and architectural optimizations[C]//2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture.IEEE,2020:1067-1081. [72]SKOG I,HANDEL P.Time synchronization errors in looselycoupled gps-aided inertial navigation systems[J].IEEE Tran-sactions on Intelligent Transportation Systems,2011,12(4):1014-1023. [73]TANG W,WANG Z,ZHANG Q,et al.Set-membership estimation for linear time-varying descriptor systems[J].Automatica,2020,115:108867. [74]HUANG J,CHE H,RAÏSSI T,et al.Functional interval ob-server for discrete-time switched descriptor systems[J].IEEE Transactions on Automatic Control,2021,67(5):2497-2504. [75]GUO S,REN W,AHN C K,et al.Reachability analysis-basedinterval estimation for discretetime takagi-sugeno fuzzy systems[J].IEEE Transactions on Fuzzy Systems,2021,30(6):1981-1992. [76]VEIBÄCK C,HENDEBY G,GUSTAFSSON F.Uncertain timestamps in linear state estimation[J].IEEE Transactions on Ae-rospace and Electronic Systems,2018,55(3):1334-1346. [77]VEIBÁCK C,HENDEBY G,GUSTAFSSON F.On fusion ofsensor measurements and observation with uncertain timestamp for target tracking[C]//2016 19th International Conference on Information Fusion.IEEE,2016:1268-1275. [78]LI B,XIAO G,LU R,et al.On feasibility and limitations of detecting false data injection attacks on power grid state estimation using d-facts devices[J].IEEE Transactions on Industrial Informatics,2020,16(2):854-864. [79]ZHAO D,DING S X,KARIMI H R,et al.Robust 1 filtering for two-dimensional uncertain linear discrete time-varying systems:A krein space-based method[J].IEEE Transactions on Automatic Control,2019,64(12):5124-5131. [80]WANG Y,LIU Y,FUJIMOTO H,et al.Vision-based lateralstate estimation for integrated control of automated vehicles considering multi-rate and unevenly delayed measurements[J].IEEE/ASME Transactions on Mechatronics,2018,23(6):2619-2627. [81]FAWZI H,TABUADA P,DIGGAVI S.Secure estimation andcontrol for cyber-physical systems under adversarial attacks [J].IEEE Transactions on Automatic Control,2014,59(6):1454-1467. [82]CHONG M S,WAKAIKI M,HESPANHA J P.Observability of linear systems under adversarial attacks [C]//2015 American Control Conference(ACC).IEEE,2015:2439-2444. [83]ZHOU S,LIU C,YE D,et al.Adversarial attacks and defenses in deep learning:From a perspective of cybersecurity[J].ACM Computing Surveys,2022,55(8):1-39. [84]HUANG H,CHEN Z,CHEN H,et al.T-sea:Transfer-basedself-ensemble attack on object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:20514-20523. [85]NESTI F,ROSSOLINI G,NAIR S,et al.Evaluating the robustness of semantic segmentation for autonomous driving against real-world adversarial patch attacks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:2280-2289. [86]WANG J,WANG C,LIN Q,et al.Adversarial attacks and defenses in deep learning for image recognition:A survey[J].Neurocomputing,2022,514:162-181. [87]MUHAMMAD F,ANJUM W,MAZHAR K S.A critical analysis on the security concerns of internet of things(iot) [J].International Journal of Computer Applications,2015,111(7):1-6. [88]SUN J,CAO Y,CHEN Q A,et al.Towards Robust LiDAR-based Perception in Autonomous Driving:General Black-box Adversarial Sensor Attack and Countermeasures[J].arXiv:2006.16974,2020. |
|