计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241100037-7.doi: 10.11896/jsjkx.241100037

• 计算机图形学&多媒体 • 上一篇    下一篇

CINN:一种高速且抗JPEG的医学图像水印网络

张小瑞1, 许亚楠1, 孙伟2   

  1. 1 南京信息工程大学计算机学院、网络空间学院 南京 210044
    2 南京信息工程大学自动化学院 南京 210044
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 张小瑞(zxr365@126.com)
  • 基金资助:
    国家自然科学基金(62272236,62376128);江苏省自然科学基金(BK20201136,BK20191401)

CINN:A High-speed and JPEG-resistant Medical Image Watermarking Network

ZHANG Xiaorui1, XU Yanan1, SUN Wei2   

  1. 1 School of Computer Science and School of Cyber Science and Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China
    2 School of Automation,Nanjing University of Information Science and Technology,Nanjing 210044,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    National Natural Science Foundation of China(62272236,62376128) and Natural Science Foundation of Jiangsu Province(BK20201136,BK20191401).

摘要: 针对远程医疗中医学图像隐私保护及传输效率问题,提出了一种抗JPEG压缩的医学图像水印恢复算法。传统方法如奇偶校验码和海明码在水印纠错方面存在局限性,而里德-所罗门码虽然能有效恢复多比特错误,但面对JPEG压缩等块处理攻击时,其恢复能力受限。随着深度学习的发展,基于INN的水印技术虽实现了高容量信息嵌入,但计算负担大,影响了信息传递效率。为解决这些问题,首先应用里德-所罗门码对水印信息进行预处理,提高其稳定性和恢复能力,并将处理后的水印嵌入载体图像的DCT低频系数中。其次,为降低计算时间,受CSPNet的结构启发,将特征分为两部分,通过跨阶段连接优化INN的网络结构,减少模型参数数量,加速训练过程。实验结果表明,该算法在QF=50的JPEG压缩下达到了近乎100%的水印正确恢复率,同时减少了约40%的训练时间,显著提升了模型的计算效率和训练速度。

关键词: 医学图像, 隐私保护, 抗JPEG压缩, CSPNet, INN

Abstract: This paper proposes a watermark recovery algorithm for medical images against JPEG compression to address the problems of privacy protection and transmission efficiency of medical images in telemedicine.Traditional methods such as parity-check codes and Hemming codes have limitations in watermark error correction,while Reed-Solomon codes can effectively recover multi-bit error,but their recovery ability is limited when facing block processing attacks such as JPEG compression.With the development of deep learning,although INN-based watermarking technology realizes high-capacity information embedding,the computational burden is large,which affects the efficiency of information transfer.To solve these problems,this paper firstly applies Reed-Solomon code to preprocess the watermark information to improve its stability and recovery ability,and embeds the processed watermark into the DCT low-frequency coefficients of the carrier image.Secondly,in order to reduce the computation time,this paper is inspired by the structure of CSPNet,divides the features into two parts,optimizes the network structure of INN through cross-stage connection,reduces the number of model parameter,and accelerates the training process.The experimental results show that the algorithm achieves nearly 100% correct watermark recovery rate under JPEG compression with QF=50,and reduces the training time by about 40%,which significantly improves the computational efficiency and training speed of the proposed model.

Key words: Medical images, Privacy protection, Anti-JPEG compression, CSPNet, INN

中图分类号: 

  • TP389.1
[1]BAKER J,STANLEY A.Telemedicine technology:a review of services,equipment,and other aspects[J].Current Allergy and Asthma Reports,2018,18:1-8.
[2]SHEN Y T,CHEN L,YUE W W,et al.Digital technology-based telemedicine for the COVID-19 pandemic[J].Frontiers in Medicine,2021,8:646506.
[3]ZHANG X,ZHANG W,SUN W,et al.A Robust 3-D Medical Watermarking Based on Wavelet Transform for Data Protection[J].Computer Systems Science & Engineering,2022,41(3):1043-1056.
[4]ALSHANBARI H S.Medical image watermarking for ownership &tamper detection[J].Multimedia Tools and Applications,2021,80(11):16549-16564.
[5]GULL S,PARAH S A.Advances in medical image watermar-king:a state of the art review[J].Multimedia Tools and Applications,2024,83(1):1407-1447.
[6]CHAN P W,LYU M R.A DWT-based digital video watermarking scheme with error correcting code[C]//International Confe-rence on Information and Communications Security.Berlin:Springer,2003:202-213.
[7]KAWAGUCHI S.Spread-spectrum watermarking model using a parity-check code for simultaneous restoration of message and image[J].Journal of the Physical Society of Japan,2021,90(10):104003.
[8]THAKUR S,SINGH A K,KUMAR B,et al.Improved DWT-SVD-based medical image watermarking through hamming code and chaotic encryption[C]//Advances in VLSI,Communication,and Signal Processing:Select Proceedings of VCAS 2018.Springer,2020:897-905.
[9]REZA F A,ASLI M E,SARBISHEIE G.Security Evaluation of DWT Based Watermarking Schemes and its Improvement Using BER Coding[J].Research Journal of Applied Sciences,Engineering and Technology,2012,4(17):3031-3039.
[10]LU S P,WANG R,ZHONG T,et al.Large-capacity image steganography based on invertible neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10816-10825.
[11]LAN Y,SHANG F,YANG J,et al.Robust image steganogra-phy:hiding messages in frequency coefficients[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:14955-14963.
[12]JING J,DENG X,XU M,et al.HiNet:Deep image hiding by invertible network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:4733-4742.
[13]WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:390-391.
[14]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.Scaled-yolov4:Scaling cross stage partial network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13029-13038.
[15]SHEN L,WANG Y.TCCT:Tightly-coupled convolutionaltransformer on time series forecasting[J].Neurocomputing,2022,480:131-145.
[16]GUAN Z,JING J,DENG X,et al.DeepMIH:Deep invertible network for multiple image hiding[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(1):372-390.
[17]XU Y,MAO Y.A Robustness Improved Watermarking Scheme based on Invertible Neural Network[C]//2024 36th Chinese Control and Decision Conference(CCDC).IEEE,2024:1304-1309.
[18]NORIEGA J A M,KURKOSKI B M,MIYATAKE M N,et al.Image authentication and recovery using BCH error-correcting codes[J].International Journal of Computers,2011,5(1):26-33.
[19]GOLEA N E H,MELKEMI K E,BEHLOUL A.Zero-bit fragilewatermarking for medical image tamper detection and recovery using RS code and lifting wavelet transform[J].The Imaging Science Journal,2021,69(5/6/7/8):334-349.
[20]ZHU J.HiDDeN:hiding data with deep networks[J].arXiv:1807.09937,2018.
[21]LIANG Z,ZHANG W.Efficient Berlekamp-Massey algorithmand architecture for Reed-Solomon decoder[J].Journal of Signal Processing Systems,2017,86:51-65.
[22]AHMADI M,NOROUZI A,KARIMI N,et al.ReDMark:Framework for residual diffusion watermarking based on deep networks[J].Expert Systems with Applications,2020,146:113157.
[23]SHIN R,SONG D.JPEG-resistant adversarial images[C]//NIPS 2017 Workshop on Machine Learning and Computer Security.2017.
[24]HORE A,ZIOU D.Image quality metrics:PSNR vs.SSIM[C]//2010 20th International Conference on Pattern Recognition.IEEE,2010:2366-2369.
[25]ZHANG K A,CUESTA-INFANTE A,XU L,et al.Stega-noGAN:High capacity image steganography with GANs[J].arXiv:1901.03892,2019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!