计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 178-185.doi: 10.11896/jsjkx.241100174

• 高性能计算 • 上一篇    下一篇

基于ARIMA和LSTM的高性能计算平台资源使用的预测研究

李思琪, 俞琨, 陈宇皓   

  1. 华东师范大学数据科学与工程学院 上海 200062
  • 收稿日期:2024-11-28 修回日期:2025-01-26 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 俞琨(kyu@cc.ecnu.edu.cn)
  • 作者简介:(51275903034@stu.ecnu.edu.cn)
  • 基金资助:
    国家自然科学基金(62377013)

Prediction of Resource Usage on High-performance Computing Platforms Based on ARIMAand LSTM

LI Siqi, YU Kun, CHEN Yuhao   

  1. School of Data Science and Engineering,East China Normal University,Shanghai 200062,China
  • Received:2024-11-28 Revised:2025-01-26 Online:2025-09-15 Published:2025-09-11
  • About author:LI Siqi,born in 2002,postgraduate,is a member of CCF(No.V2924G).Her main research interests include high-performance computing and data analysis.
    YU Kun,born in 1979,master,engineer,is a member of CCF(No.I8213M).Her main research interests include high-performance computing,computational resource management and optimization.
  • Supported by:
    National Natural Science Foundation of China(62377013).

摘要: 随着科学研究和工程模拟中数据规模和实验复杂度的不断提升,对高性能计算资源的需求日益增长。然而由于资源有限,如何高效利用现有计算资源成为亟待解决的问题。基于2022年1月至2023年11月期间华东师范大学高性能计算中心集群收集的40万条作业数据,整理得到集群每日运行作业数和CPU资源利用率,以表征计算资源的使用情况。采用ARIMA模型、由LSTM改进的2DLSTM模型和ARIMA-2DLSTM组合模型对历史数据进行拟合,实现了对集群计算资源使用情况的长短期预测。通过平均绝对误差(MAE)和均方误差(MSE)指标评估模型预测效果,实验结果表明,ARIMA-2DLSTM组合模型在预测准确性上优于单独使用ARIMA模型和2DLSTM模型,且能够精确预测趋势变化以及波峰与低谷出现的时间,为高性能计算中心的资源分配提供了有效支持。

关键词: 高性能计算, 时间序列分析, ARIMA模型, LSTM模型, ARIMA-LSTM组合模型

Abstract: The rapid increase in data scale and experimental complexity in scientific research and engineering simulations has significantly heightened the demand for high-performance computing(HPC) resources.However,limited availability of such resources necessitates efficient utilization strategies.This paper analyzes over 400 000 job records collected from the HPC cluster at East China Normal University between January 2022 and November 2023.After preprocessing the data,daily job counts and CPU utilization rates are extracted to represent the cluster’s resource usage patterns.Autoregressive Integrated Moving Average(ARIMA),Long Short-Term Memory with Dual Dropouts(2DLSTM),and a hybrid ARIMA-2DLSTM are applied to fit the historical data and forecast short-term and long-term resource usage.Model performance is evaluated by mean absolute error(MAE) and mean squared error(MSE) metrics.Results indicate that the ARIMA-2DLSTM hybrid model achieves superior predictive accuracy compared to standalone ARIMA and 2DLSTM models.The hybrid model effectively captures trend changes of the cluster’s resource usage patterns and accurately predicts peak and trough timings,providing critical insights for optimizing resource allocation in HPC environments.

Key words: High-performance computing, Time series analysis, ARIMA model, LSTM model, ARIMA-LSTM hybrid model

中图分类号: 

  • TP183
[1]LU P J,XIONG Z Y,LAI M C.Survey on High-performanceComputing Technology and Standards[J].Computer Science,2023,50(11):1-7.
[2]Editorial Department of this Journal.Top 10 Frontiers ofScience and Technology in 2023[J].Science and Technology Think Tank,2023(1):1-4.
[3]WANG J Y,ZHOU B Y,ZHANG F,et al.Overview of Energy Consumption Models and Energy Efficiency Algorithms in Data Centers[J].Journal of Computer Research and Development,2019,56(8):1587-1603.
[4]CHEN Y J.Energy Consumption Analysis and Power Consump-tion Prediction of High-Performance Computing Clusters[D].Jinan:Qilu University of Technology,2023.
[5]SUN J W.Data-Driven Research on Execution Time Predictionand Optimization for High-Performance Computing Programs[D].Hefei:University of Science and Technology of China,2020.
[6]ZHANG J P.Research on Active Learning Methods for Empirical Performance Modeling of High-Performance Computing Programs[D].Hefei:University of Science and Technology of China,2020.
[7]KUMAR A S,MAZUMDAR S.Forecasting HPC workloadusing ARMA models and SSA[C]//2016 International Confe-rence on Information Technology(ICIT).IEEE,2016:294-297.
[8]BI J,ZHANG L,YUAN H,et al.Hybrid task prediction based on wavelet decomposition and ARIMA model in cloud data center[C]//2018 IEEE 15th International Conference on Networking,Sensing and Control(ICNSC).IEEE,2018:1-6.
[9]IPEK E,DE SUPINSKI B R,SCHULZ M,et al.An approach to performance prediction for parallel applications[C]//Euro-Par 2005 Parallel Processing:11th International Euro-Par Confe-rence,Lisbon,Portugal,August 30-September 2,2005.Procee-dings 11.Berlin:Springer,2005:196-205.
[10]BORGHESI A,BARTOLINI A,LOMBARDI M,et al.Predictive modeling for job power consumption in HPC systems[C]//High Performance Computing:31st International Conference,ISC High Performance 2016,Frankfurt,Germany,June 19-23,2016,Proceedings.Springer,2016:181-199.
[11]KONTOPOULOU V I,PANAGOPOULOS A D,KAKKOS I,et al.A review of ARIMA vs.machine learning approaches for time series forecasting in data driven networks[J].Future Internet,2023,15(8):255.
[12]SHARIFF S M.Autoregressive Integrated Moving Average(ARIMA) and Long Short-Term Memory(LSTM) network models for forecasting energy consumptions[J].European Journal of Electrical Engineering and Computer Science,2022,6(3):7-10.
[13]SIRISHA U M,BELAVAGI M C,ATTIGERI G.Profit prediction using ARIMA,SARIMA and LSTM models in time series forecasting:A comparison[J].IEEE Access,2022,10:124715-124727.
[14]FAN D,SUN H,YAO J,et al.Well production forecastingbased on ARIMA-LSTM model considering manual operations[J].Energy,2021,220:119708.
[15]SELVIN S,VINAYAKUMAR R,GOPALAKRISHNAN E A,et al.Stock price prediction using LSTM,RNN and CNN-sliding window model[C]//2017 International Conference on Advances in Computing,Communications and Informatics(ICACCI).IEEE,2017:1643-1647.
[16]SCHAFFER A L,DOBBINS T A,PEARSON S A.Interrupted time series analysis using autoregressive integrated moving average(ARIMA) models:a guide for evaluating large-scale health interventions[J].BMC Medical Research Methodology,2021,21:1-12.
[17]BOX G E P,JENKINS G M,REINSEL G C,et al.Time series analysis:forecasting and control[M].John Wiley & Sons,2015:88-126.
[18]ARUNKUMAR K E,KALAGA D V,KUMAR C M S,et al.Forecasting the dynamics of cumulative COVID-19 cases(confirmed,recovered and deaths) for top-16 countries using statistical machine learning models:Auto-Regressive Integrated Mo-ving Average(ARIMA) and Seasonal Auto-Regressive Integrated Moving Average(SARIMA)[J].Applied Soft Computing,2021,103:107161.
[19]HOCHREITER S,SCHMIDHUBER J.Long Short-term Me-mory[J].Neural Computation,1997,9(8):1735-1780.
[20]CHOUDAKKANAVAR G,MANGAI J A.A hybrid 1D-CNN-Bi-LSTM based model with spatial dropout for multiple fault diagnosis of roller bearing[J].International Journal of Advanced Computer Science and Applications,2022,13(8):0130873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!