计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250100011-4.doi: 10.11896/jsjkx.250100011

• 人工智能 • 上一篇    下一篇

结合图检索与上下文排序的检索增强生成技术研究

薛晓楠   

  1. 北京青年政治学院 北京 100102
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 薛晓楠(xuexiaonan@126.com)

Research on Retrieval-augmented Generation Technology Combining Graph Retrieval and Contextual Ranking

XUE Xiaonan   

  1. Beijing Youth Political College,Beijing 100102,China
  • Online:2025-11-15 Published:2025-11-10

摘要: 复杂问答任务需要模型能够从大规模异构知识中高效检索相关信息,同时支持生成高质量答案。然而,现有检索增强生成方法在知识检索、语意关联度和生成一致性上存在诸多挑战:1)知识检索模块的粒度和结构化信息不足;2)检索上下文相关性不足,排序能力有限,以及生成质量受限;3)生成模型难以准确整合检索到的知识并生成上下文一致的答案。为解决上述问题,提出了一种结合图检索增强生成与上下文排序的大语言模型生成框架GraphRank-RAG。该框架通过引入基于图的检索机制,捕获上下文间的深层语义关联,优化上下文排序与答案生成过程。实验结果表明,该方法在多个开放域问答数据集上的表现优于现有方法,在检索准确率和生成质量上取得显著提升。

关键词: 大语言模型, 检索增强生成, 图检索, 上下文排序, 检索技术

Abstract: Complex question-answering tasks require models to efficiently retrieve relevant information from large-scale heterogeneous knowledge sources while supporting the generation of high-quality answers.However,existing retrieval-augmented generation methods face numerous challenges in knowledge retrieval,semantic relevance,and generation consistency:(1) the granularity and structured information of the knowledge retrieval module are insufficient;(2) there is a lack of contextual relevance in retrieval,limited ranking capability,and constrained generation quality;(3) generative models struggle to accurately integrate retrieved knowledge and produce contextually consistent answers.This paper proposes a novel framework,GraphRank-RAG,which combines graph-based retrieval-augmented generation with contextual ranking to address the issues mentioned.By introducing a graph-based retrieval mechanism,the framework captures deep semantic relationships within contexts,optimizing both the ranking process and answer generation.Experimental results demonstrate that the proposed method outperforms existing approaches on multiple open-domain question-answering datasets,achieving significant improvements in retrieval accuracy and generation quality.

Key words: Large language model, Retrieval augmented generation, Graph retrieval, Contextual rank, Retrieval technology

中图分类号: 

  • TP181
[1]LEWIS P,PEREZ E,PIKTUS A,et al.Retrieval-AugmentedGeneration for Knowledge-Intensive NLP Tasks[J].arXiv:2005.11401,2020.
[2]TONMOY S M T I,ZAMAN S M M,JAIN V,et al.A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models[J].arXiv:2401.01313,2024.
[3]KASAI J,SAKAGUCHI K,YOICHI T,et al.Realtime QA:What’s the answer right now?[C]//NeurIPS.2023.
[4]XU P,PING W,WU X C,et al.Retrieval meets long context large language models[C]//Proceedings of the International Conference on Learning Representations(ICLR).2024.
[5]ROBERTSON S,ZARAGOZA H.The probabilistic relevanceframework:BM25 and beyond[J].Foundations and Trends© in Information Retrieval,2009,3(4):333-389.
[6]KARPUKHIN V,OGˇUZ B,MIN S,et al.Dense passage retrievalfor open-domain question answering[J].arXiv:2004.04906,2020.
[7]XU F,SHI W,CHOI E.Recomp:Improving retrieval-augmented lms with compression and selective augmentation[J].arXiv:2310.04408,2023.
[8]MA X,ZHANG X,PRADEEP R,et al.Zero-shot listwise document reranking with a large language model[J].arXiv:2305.02156,2023.
[9]YU Y,PING W,LIU Z,et al.Rankrag:Unifying context ranking with retrieval-augmented generation in llms[J].arXiv:2407.02485,2024
[10]EDGE D,TRINH H,CHENG N,et al.From local to global:Agraph rag approach to query-focused summarization[J].arXiv:2404.16130,2024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!