计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250100011-4.doi: 10.11896/jsjkx.250100011
薛晓楠
XUE Xiaonan
摘要: 复杂问答任务需要模型能够从大规模异构知识中高效检索相关信息,同时支持生成高质量答案。然而,现有检索增强生成方法在知识检索、语意关联度和生成一致性上存在诸多挑战:1)知识检索模块的粒度和结构化信息不足;2)检索上下文相关性不足,排序能力有限,以及生成质量受限;3)生成模型难以准确整合检索到的知识并生成上下文一致的答案。为解决上述问题,提出了一种结合图检索增强生成与上下文排序的大语言模型生成框架GraphRank-RAG。该框架通过引入基于图的检索机制,捕获上下文间的深层语义关联,优化上下文排序与答案生成过程。实验结果表明,该方法在多个开放域问答数据集上的表现优于现有方法,在检索准确率和生成质量上取得显著提升。
中图分类号:
| [1]LEWIS P,PEREZ E,PIKTUS A,et al.Retrieval-AugmentedGeneration for Knowledge-Intensive NLP Tasks[J].arXiv:2005.11401,2020. [2]TONMOY S M T I,ZAMAN S M M,JAIN V,et al.A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models[J].arXiv:2401.01313,2024. [3]KASAI J,SAKAGUCHI K,YOICHI T,et al.Realtime QA:What’s the answer right now?[C]//NeurIPS.2023. [4]XU P,PING W,WU X C,et al.Retrieval meets long context large language models[C]//Proceedings of the International Conference on Learning Representations(ICLR).2024. [5]ROBERTSON S,ZARAGOZA H.The probabilistic relevanceframework:BM25 and beyond[J].Foundations and Trends© in Information Retrieval,2009,3(4):333-389. [6]KARPUKHIN V,OGˇUZ B,MIN S,et al.Dense passage retrievalfor open-domain question answering[J].arXiv:2004.04906,2020. [7]XU F,SHI W,CHOI E.Recomp:Improving retrieval-augmented lms with compression and selective augmentation[J].arXiv:2310.04408,2023. [8]MA X,ZHANG X,PRADEEP R,et al.Zero-shot listwise document reranking with a large language model[J].arXiv:2305.02156,2023. [9]YU Y,PING W,LIU Z,et al.Rankrag:Unifying context ranking with retrieval-augmented generation in llms[J].arXiv:2407.02485,2024 [10]EDGE D,TRINH H,CHENG N,et al.From local to global:Agraph rag approach to query-focused summarization[J].arXiv:2404.16130,2024. |
|
||