计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250200088-6.doi: 10.11896/jsjkx.250200088

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于图卷积神经网络的多属性个性化航空行程推荐系统

彭明田1, 王味帅2, 田丰1, 李江涛1, 卢燕1, 马淑燕1, 朱红林1, 刘驰2   

  1. 1 中国民航信息网络股份有限公司北京市民航大数据工程技术研究中心 北京 100318
    2 北京理工大学计算机学院 北京 100081
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 刘驰(chiliu@bit.edu.cn)
  • 作者简介:mtpeng@travelsky.com.cn
  • 基金资助:
    智能动态行程规划技术研究项目

Personalized Multi-attribute Airline Itinerary Recommendation System by Graph ConvolutionalNeural Network

PENG Mingtian1, WANG Weishuai 2, TIAN Feng1, LI Jiangtao1, LU Yan1, MA Shuyan1, ZHU Honglin1, LIU Chi 2   

  1. 1 Beijing Civil Aviation Big Data Engineering Technology Research Center,Travelsky Technology Limited,Beijing 100318,China
    2 School of Computer Science,Beijing Institute of Technology,Beijing 100081,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Intelligent Dynamic Journey Planning Technology Research Project.

摘要: 航空市场的快速扩展使航班选择愈加复杂,旅客难以从海量信息中选出最佳方案。现有航空行程推荐系统多采用按价格、时间或准点率排序的静态方法,难以兼顾用户个性化需求和多联程航班组合的复杂性。针对这种情况,提出了基于图卷积神经网络的多属性个性化航空行程推荐系统,以图结构数据处理提升推荐精度和个性化效果。该系统构建航班数据的图结构模型,细化航班关键属性,并将用户历史购票行为转化为图节点间的交互信息。通过图卷积神经网络逐层特征聚合,捕捉用户与航班属性间的高阶关系。实验结果表明,该模型有效结合用户偏好与航班静态属性,显著提高了推荐系统的性能与准确性,为用户提供更优的行程建议。

关键词: 图卷积神经网络, 航空行程推荐系统, 个性化推荐, 多联程航班, 用户行为分析

Abstract: The rapid expansion of the aviation market has made flight choices increasingly complex,making it difficult for passengers to choose the best option from a massive amount of information.Existing flight recommendation systems mostly use static methods of sorting by price,time or punctuality,which make it difficult to take into account the personalized needs of users and the complexity of multi-connection flight combinations.In response to this situation,this paper proposes an air itinerary recommendation system based on graph convolutional neural networks,which uses graph structure data processing to improve recommendation accuracy and personalized effects.The system builds a graph structure model of flight data,refines the key attributes of flights,and converts users’ historical ticket purchasing behavior into interactive information between graph nodes.Through layer-by-layer feature aggregation through graph convolutional neural network,the high-order relationship between users and flight attributes is captured.Experiments show that the proposed model effectively combines user preferences and flight static attributes,significantly improves the performance and accuracy of the recommendation system,and provides users with better itinerary suggestions

Key words: Graph convolutional neural network, Air itinerary recommendation system, Personalized recommendation, Multi-connection flights, User behavior analysis

中图分类号: 

  • TP391
[1]VULLAM N,VELLELA S S,REDDY V,et al.Multi-agent personalized recommendation system in e-commerce based on user[C]//2023 2nd International Conference on Applied Artificial Intelligence and Computing(ICAAIC).IEEE,2023:1194-1199.
[2]KARN A L,KARNA R K,KONDAMUDI B R,et al.RE-TRACTED ARTICLE:Customer centric hybrid recommendation system for E-Commerce applications by integrating hybrid sentiment analysis[J].Electronic Commerce Research,2023,23(1):279-314.
[3]KO H,LEE S,PARK Y,et al.A survey of recommendation systems:recommendation models,techniques,and application fields[J].Electronics,2022,11(1):141.
[4]HUSSIEN F T A,RAHMA A M S,WAHAB H B A.Recom-mendation systems for e-commerce systems an overview[C]//Journal of Physics:Conference Series.IOP Publishing,2021:012024.
[5] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37.
[6]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182.
[7]YANG M,LI Z,ZHOU M,et al.Hicf:Hyperbolic informativecollaborative filtering[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2022:2212-2221.
[8]LUO K,YANG H,WU G,et al.Deep critiquing for VAE-based recommender systems[C]//Proceedings of the 43rd Internatio-nal ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1269-1278.
[9]XU B B,CEN K T,HUANG J J,et al.A review of graph convolutional neural networks[J].Chinese Journal of Computers,2020,43(5):755-780.
[10]LIU Y,ZHOU X,KOU H,et al.Privacy-preserving point-of-interest recommendation based on simplified graph convolutional network for geological traveling[J].ACM Transactions on Intelligent Systems and Technology,2024,15(4):1-17.
[11]CHENG Z T,ZHONG T,ZHANG S M,et al.A survey of re-commendation systems based on graph learning[J].Computer Science,2022,49(9):1-13.
[12]MA H J.Recommendation algorithm based on convolutionalneural network and constrained probabilistic matrix factorization[J].Computer Science,2020,47(S1):540-545.
[13]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd international ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174.
[14]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648.
[15]XU J,HUANG J,CHEN Z,et al.ODNET:A Novel Persona-lized Origin-Destination Ranking Network for Flight Recommendation[C]//2022 IEEE 38th International Conference on Data Engineering(ICDE).IEEE,2022:3481-3493.
[16]MOTTINI A,ACUNA-AGOST R.Deep choice model usingpointer networks for airline itinerary prediction[C]//Procee-dings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:1575-1583.
[17]HUANG J,LI Y,SUN S,et al.Personalized flight itineraryranking at fliggy[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:2541-2548.
[18]WANG H,LOU S,JING J,et al.The EBS-A* algorithm:Animproved A* algorithm for path planning[J].PLoS One,2022,17(2):e0263841-e0263841.
[19]KATOCH S,CHAUHAN S S,KUMAR V.A review on genetic algorithm:past,present,and future[J].Multimedia Tools and Applications,2021,80:8091-8126.
[20]DING J L,ZHANG L.Implicit interaction feature mining and flight recommendation model for civil aviation passengers based on graph neural network[J].Computer Applications and Software,2023,40(7):166-171,273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!