计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 37-46.doi: 10.11896/jsjkx.250300096

• 智能医学工程 • 上一篇    下一篇

多尺度多粒度解耦蒸馏模糊分类器及其在癫痫脑电信号检测中的应用

蒋云良1,2,3, 金森洋1,2, 张雄涛1,2, 刘凯宁1,2, 申情1,2   

  1. 1 湖州师范学院信息工程学院 浙江 湖州 313000
    2 浙江省现代农业资源智慧管理与应用研究重点实验室 浙江 湖州 313000
    3 浙江师范大学计算机科学与技术学院 浙江 金华 321004
  • 收稿日期:2025-03-18 修回日期:2025-06-28 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 张雄涛(1047897965@qq.com)
  • 作者简介:(02032@zjhu.edu.cn)
  • 基金资助:
    国家自然科学基金(62376094,U22A20102);浙江省大学生科技创新活动计划项目(新苗人才计划)(2024R430B021)

Multi-scale Multi-granularity Decoupled Distillation Fuzzy Classifier and Its Application inEpileptic EEG Signal Detection

JIANG Yunliang1,2,3, JIN Senyang1,2, ZHANG Xiongtao1,2, LIU Kaining1,2, SHEN Qing1,2   

  1. 1 School of Information Engineering,Huzhou University,Huzhou,Zhejiang 313000,China
    2 Zhejiang Province Key Laboratory of Smart Management and Application of Modern Agricultural Resources,Huzhou,Zhejiang 313000,China
    3 School of Computer Science and Technology,Zhejiang Normal University,Jinhua,Zhejiang 321004,China
  • Received:2025-03-18 Revised:2025-06-28 Online:2025-09-15 Published:2025-09-11
  • About author:JIANG Yunliang,born in 1967,Ph.D,professor,Ph.D supervisor.His main research interests include deep lear-ning,intelligent transportation,intelligent healthcare and smart education.
    ZHANG Xiongtao,born in 1984,Ph.D,associate professor.His main research interests include artificial intelligence,pattern recognize and machine learning.
  • Supported by:
    National Natural Science Foundation of China(62376094,U22A20102) and Zhejiang Provincial UndergraduateScience and Technology Innovation Program(Xinmiao Program)(2024R430B021).

摘要: 在癫痫脑电信号检测任务中,深度学习方法具有强大的深度表达能力,但可解释性较差,Takagi-Sugeno-Kang(TSK)模糊分类器虽具备良好的基于模糊规则的可解释性,但其建模能力有限。为了更好地兼顾癫痫检测模型的性能与可解释性,提出了一种多尺度多粒度解耦蒸馏模糊分类器(MMDD-TSK-FC)。首先,训练不同卷积核大小的一维卷积神经网络作为教师模型,目的是充分提取脑电信号在不同尺度上的特征信息;其次,将教师模型的输出结果软化生成软标签,最小化其与对应不同规则粒度TSK模糊分类器输出软标签之间的Kullback-Leible散度,以实现深度特征表示知识的有效迁移,同时最小化学生模型输出与真实标签的交叉熵损失;最后,通过投票法整合多个TSK模糊分类器的输出结果。同时,借由多粒度的TSK模糊分类器生成的多组由繁至简的IF-THEN规则,为模型检测依据提供可解释表达。在Bonn和新德里HauzKhas癫痫脑电数据集上的实验结果充分验证了MMDD-TSK-FC的优势,其相比经典TSK分类器提升了约5%的准确率,优于其他深度知识蒸馏模型约3%。

关键词: TSK模糊分类器, 癫痫脑电信号检测, 多尺度, 多粒度, 知识蒸馏, 可解释性

Abstract: In the task of epileptic EEG signal detection,deep learning methods exhibit outstanding feature representation capabilities but suffer from poor interpretability.In contrast,the Takagi-Sugeno-Kang(TSK) fuzzy classifier is endowed with superior fuzzy-rule based interpretability,yet is hambered by its limited modeling ability.To well balance the performance and interpre-tability when deal with EEG signals,this paper proposes a Multi-scale Multi-granularity Decoupled Distillation TSK Fuzzy Classifier(MMDD-TSK-FC).Firstly,training one-dimensional Convolutional Neural Networks with different kernel sizes as teacher models enables comprehensive extraction of EEG features at multiple scales.Next,soft labels are generated by softening the outputs of the teacher models,and the Kullback-Leibler divergence between these soft labels and the outputs of TSK fuzzy classifiers with varying rule numbers is minimized to facilitate deep feature representation knowledge transfer.Meanwhile,the cross-entropy loss between the student model’s output and the ground-truth labels is minimized.Finally,the outputs of multiple TSK fuzzy classifiers are integrated using a voting mechanism.Meanwhile,the multi-granularity TSK fuzzy classifiers generate multiple sets of IF-THEN rules with varying levels of complexity,providing interpretable reasoning to support the model’s detection decisions.The experimental results on the Bonn and New Delhi HauzKhas epileptic EEG datasets thoroughly validate the superiority of the MMDD-TSK-FC,which improves accuracy by approximately 5% compared to the classical TSK classifier and outperforms other deep knowledge distillation models by around 3%.

Key words: Takagi-Sugeno-Kang fuzzy classifier, Epileptic EEG signal detection, Multi-scale, Multi-granularity, Knowledge distillation, Interpretability

中图分类号: 

  • TP391
[1]SHARMA R,MEENA H K.Emerging trends in EEG signalprocessing:A systematic review[J].SN Computer Science,2024,5(4):415.
[2]ZHENG Y,DING J,LIU F,et al.Adaptive neural decision tree for EEG based emotion recognition[J].Information Sciences,2023,643:119160.
[3]TANG X,WANG T,DU Y,et al.Motor imagery EEG recognition with KNN-based smooth auto-encoder[J].Artificial Intelligence in Medicine,2019,101:101747.
[4]ZHANG C Y,LI Z X,CAO J D.Network intrusion detection based on random k-nearest neighbor ensemble algorithm[J].Journal of Nantong University(Natural Science Edition),2023,22(3):26-32.
[5]ABHISHEK S,KUMAR S,MOHAN N,et al.EEG based automated detection of seizure using machine learning approach and traditional features[J].Expert Systems with Applications,2024,251:123991.
[6]KHARE S K,BAJAJ V,ACHARYA U R.SPWVD-CNN forautomated detection of schizophrenia patients using EEG signals[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-9.
[7]ANITA M,KOWSHALYA A M.Automatic epileptic seizuredetection using MSA-DCNN and LSTM techniques with EEG signals[J].Expert Systems with Applications,2024,238:121727.
[8]XU B,YANG G.Interpretability research of deep learning:A literature survey[J].Information Fusion,2025,115:102721.
[9]JIANG Y,DENG Z,CHUNG F L,et al.Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system[J].IEEE Transactions on Fuzzy Systems,2016,25(1):3-20.
[10]DENG Z,XU P,XIE L,et al.Transductive joint-knowledge-transfer TSK-FC for recognition of epileptic EEG signals[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2018,26(8):1481-1494.
[11]SUN S,REN W,LI J,et al.Logit standardization in knowledge distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024:15731-15740.
[12]GU X,CHENG X.Distilling a deep neural network into a Takagi-Sugeno-Kang fuzzy inference system[J].arXiv:2010.04974,2020.
[13]JIANG Y,WENG J,ZHANG X,et al.A CNN-based born-again TSK fuzzy classifier integrating soft label information and knowledge distillation[J].IEEE Transactions on Fuzzy Systems,2022,31(6):1843-1854.
[14]YAN Z,LOW W F,CHEN Y,et al.Multi-scale 3d gaussiansplatting for anti-aliased rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024:20923-20931.
[15]XIE J,XIANG X,XIA S,et al.MGNR:A multi-granularityneighbor relationship and its application in KNN classification and clustering methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(12):7956-7972.
[16]XU J,LI Z,DU B,et al.Reluplex made more practical:Leaky ReLU[C]//2020 IEEE Symposium on Computers and communications(ISCC).IEEE,2020:1-7.
[17]BIAN K,PRIYADARSHI R.Machine learning optimizationtechniques:a Survey,classification,challenges,and Future Research Issues[J].Archives of Computational Methods in Engineering,2024,31(7):4209-4233.
[18]DING X,ZHANG X,HAN J,et al.Scaling up your kernels to 31×31:Revisiting large kernel design in cnns[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:11963-11975.
[19]XU A L,ZHU Y M,SUN Q,et al.Deep Learning Air Quality Forecast with Divided Area Based on K-means[J].Journal of Nantong University(Natural Science Edition),2021,20(3):49-56.
[20]PEDRYCZ W.Federated FCM:Clustering under privacy re-quirements[J].IEEE Transactions on Fuzzy Systems,2021,30(8):3384-3388.
[21]XU H,TIAN Y,REN H,et al.A lightweight channel and time attention enhanced 1D CNN model for environmental sound classification[J].Expert Systems with Applications,2024,249:123768.
[22]SHI Z,WU D,GUO C,et al.FCM-RDpA:TSK fuzzy regression model construction using fuzzy C-means clustering,regularization,Droprule,and Powerball Adabelief[J].Information Sciences,2021,574:490-504.
[23]XU P,DENG Z,WANG J,et al.Transfer representation lear-ning with TSK fuzzy system[J].IEEE Transactions on Fuzzy Systems,2019,29(3):649-663.
[24]TIAN X B,DENG Z H,WANG S T.Multi-view Epilepsy Detection Algorithm Combining Deep and Shallow Features[J].Journal of Frontiers of Computer Science and Technology,2020,14(10):1712-1726.
[25]ZHANG X,YIN Z,JIANG Y,et al.Fuzzy knowledge distillation from high-order TSK to low-order TSK[J].arXiv:2302.08038,2023.
[26]JIANG Y L,WENG J W,SHEN Q,et al.TSK Fuzzy Classifier Based on Enhanced Deep Feature for Epilepsy EEG Signal Recognition[J].Control and Decision,2023,38(1):171-180.
[27]ANDRZEJAK R G,LEHNERTZ K,MORMANN F,et al.Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity:Dependence on recording region and brain state[J].Physical Review E,2001,64(6):061907.
[28]SAMEER M,GUPTA B.Detection of epileptical seizuresbased on alpha band statistical features[J].WirelessPersonal Communications,2020,115(2):909-925.
[29]RAHMAN R,VARNOSFADERANI S M,MAKKE O,et al.Comprehensive analysis of EEG datasets for epileptic seizure prediction[C]//2021 IEEE International Symposium on Circuits and Systems(ISCAS).IEEE,2021:1-5.
[30]SHYU K K,HUANG S C,LEE L H,et al.A low complexity estimation method of entropy for real-time seizure detection[J].IEEE Access,2023,11:5990-5999.
[31]HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!