计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 22-32.doi: 10.11896/jsjkx.250300104
李奥1, 白雪茹2, 姜佳丽3, 乔烨4
LI Ao1, BAI Xueru2, JIANG Jiali3, QIAO Ye4
摘要: 股票价格预测一直是金融研究和量化投资共同关注的重点话题。针对传统GAN模型存在模式崩溃与泛化能力弱的问题,同时为提高股价预测准确度,提出了群组交叉对抗模型(GCA),该模型包含多个生成器和多个判别器,同时在生成器和判别器间引入协作机制,以提升生成器的泛化能力,并通过知识蒸馏进一步提升生成器的预测性能。实验选取2015年1月1日至2025年1月1日期间A股(工商银行、华能国际、招商银行和青岛海尔)和美股(阿里巴巴、亚马逊、京东和美国银行)共8只股票的日度数据作为研究样本,构建了包括市场数据、技术指标在内的24个特征变量的数据集。研究结果表明,GCA模型在MAE,MAPE和MSE这3项评估指标上的表现明显优于单独应用的GRU,LSTM和Transformer模型,同时还优于结合了GAN的GRU-GAN,LSTM-GAN和Transformer-GAN模型,以及WGAN-GP和ResNLS模型;即使GAN并未对原始模型进行优化,但其引入GCA框架依旧提高了模型预测精度。进一步的讨论显示,增加生成器和判别器组数可以进一步提升预测效果。
中图分类号:
[1]HAN Z M,MENG Y X,GUO H Y,et al.Stock price prediction based on dynamic heterogeneous networks[J].Computer Applications Research,2024,41(7):2126-2133. [2]ZHANG Y,LI L.RF-MIP-GRU stock price prediction model[J].Computer Engineering and Applications,2024,60(17):272-281. [3]LONG W,LU Z,CUI L.Deep learning-based feature enginee-ring for stock price movement prediction[J].Knowledge-Based Systems,2019,164:163-173. [4]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge,2014:2672-2680. [5]WU H X,WANG Q,LI J P,et al.Enhancing stock return prediction in the Chinese market:A GAN-based approach[J].Research in International Business and Finance,2025,75:102760. [6]SUN Z T,HARIT A,CRISTEA A I,et al.MONEY:Ensemble learning for stock price movement prediction via a convolutional network with adversarial hypergraph model[J].AI Open,2023,4:165-174. [7]POLAMURI S R,SRINIVAS DR K,MOHAN DR A.Multi-Model Generative Adversarial Network Hybrid Prediction Algorithm(MMGAN-HPA) for stock market prices prediction[J].Journal of King Saud University-Computer and Information Sciences,2022,34(9):7433-7444. [8]YANG M,WANG J.Research on stock index prediction basedon spatiotemporal attention mechanism and bidirectional long short-term memory neural network[J].Operations Research and Management,2023,32(8):174-180. [9]ZHOU J N,LIU C Y,LIU J P.Stock price trend predictionmodel based on channel and multi-head attention[J].Computer Engineering and Applications,2025,61(8):324-338. [10]NEJAD F S,EBADZADEH M M.Stock market forecastingusing DRAGAN and feature matching[J].Expert Systems with Applications,2023,244:122952. [11]WANG Z X,WANG B,LI Y,et al.Cross-modal scenario gene-ration for stock price forecasting using Wasserstein GAN and GCN[J].Applied Soft Computing,2024,167(B):112342. [12]SHEN R C,ZHAI J H,HOU Y Z.Multi-generator generative adversarial networks[J].Journal of Hebei University(Natural Science Edition),2021,41(6):734-744. [13]LI W,LIANG Z,NEUMAN J,et al.Multi-generator GANlearning disconnected manifolds with mutual information[J].Knowledge-Based Systems,2021,212:106513. [14]LI X H,WANG J,JIA H D,et al.Stock market volatility prediction method based on multi-attention mechanism and graph neural networks[J].Computer Applications,2022,42(7):2265-2273. [15]WANG K F,GOU C,DUAN Y J,et al.Research progress and prospects of generative adversarial network(GAN)[J].Acta Automatica Sinica,2017,43(3):321-332. [16]ZHENG X B,LI J,ZHU M,et al.Cloud manufacturing industrial service selection method based on generative adversarial network[J].Computer Science,2025,52(4):54-63. [17]ZOU J,LI L.Research on stock price prediction based on RF-SA-GRU model[J].Computer Engineering and Applications,2023,59(15):300-309. [18]HU Y W.Stock prediction based on optimized LSTM model[J].Computer Science,2021,48(S1):151-157. [19]CHENG H Y,ZHANG J X,SUN Q S,et al.Stock trend prediction based on deep cross-modal information fusion network[J].Computer Science,2023,50(5):128-136. [20]FANG Y Q,LU Z,GE J W.Stock price prediction using joint RMSE loss LSTM-CNN model[J].Computer Engineering and Applications,2022,58(9):294-302. [21]CAO C F,LUO Z N,XIE J X,et al.Research on stock price prediction based on MDT-CNN-LSTM model[J].Computer Engineering and Applications,2022,58(5):280-286. [22]SHAO R R,LIU Y A,ZHANG W,et al.A survey on knowledge distillation in deep learning[J].Journal of Computer Science,2022,45(8):1638-1673. [23]HUANG Z H,YANG S Z,LIN W,et al.A survey on knowledge distillation[J].Journal of Computer Science,2022,45(3):624-653. [24]LIN H C,CHEN C,HUANG G,et al.Stock price predictionusing Generative Adversarial Networks[J].Journal of Computer Science,2021,17(3):188-196. [25]JIA Y,ANAISSI A,SULEIMAN B.ResNLS:An ImprovedModel for Stock Price Forecasting[J].Computational Intelligence,2023,40(1):12608. [26]CHANG W,HU Z C,PAN D Z,et al.Application of improved VAE-GAN model in battery EIS data augmentation[J].Science and Industry,2024,24(22):258-263. [27]GE Y B,LIU W J,GU Y C.Stock price prediction method integrating sentiment analysis and GAN-TrellisNet[J].Computer Engineering and Applications,2024,60(12):314-324. [28]CHANG D L,YIN J H,XIE J Y,et al.Attention-guided Dropout for image classification[J].Journal of Graphics,2021,42(1):32-36. [29]WANG L,YANG J,ZHANG C Y,et al.Dual-discriminator generative adversarial network with hybrid attention[J].Computer Engineering and Applications,2024,60(7):212-221. [30]XIA Y S,WANG Y,ZHOU L,et al.Fake data injection attack detection method based on improved generative adversarial network[J].Electric Power Construction,2022,43(3):58-65. [31]WANG P Y,ZHU Z Q.Decoupled knowledge distillation based on diffusion model[J].Computer Systems Applications,2024,33(9):58-64. |
|