计算机科学 ›› 2026, Vol. 53 ›› Issue (1): 39-50.doi: 10.11896/jsjkx.250400064

• 大语言模型技术研究及应用 • 上一篇    下一篇

大模型赋能战术对抗仿真实验体系架构及技术路径研究

刘大勇1,2, 董志明1, 郭齐胜1, 高昂3, 邱雪欢1   

  1. 1 陆军兵种大学 北京 100072;
    2 中国人民解放军32302部队 石家庄 050052;
    3 陆军研究院 北京 100072
  • 收稿日期:2025-04-14 修回日期:2025-08-27 发布日期:2026-01-08
  • 通讯作者: 董志明(dong_zhiming@163.com)
  • 作者简介:(290998101@qq.com)
  • 基金资助:
    军事类研究生资助课题重点项目(JG2024B2043)

Research on Architecture and Technology Pathways for Empowering Tactical AdversarialSimulation Experiments with LLMs

LIU Dayong1,2, DONG Zhiming1, GUO Qisheng1, GAO Ang3, QIU Xuehuan1   

  1. 1 Army Arms University of PLA, Beijing 100072, China;
    2 32302 Troops of PLA, Shijiazhuang 050052, China;
    3 Academy of Army, Beijing 100072, China
  • Received:2025-04-14 Revised:2025-08-27 Online:2026-01-08
  • About author:LIU Dayong,born in 1984,Ph.D.His main research interest is equipment demonstration,testing and simulation.
    DONG Zhiming,born in 1977,professor,Ph.D supervisor.His main research interest is equipment demonstration,testing and simulation.
  • Supported by:
    Military Graduate Research Funding Project(JG2024B2043).

摘要: 战术对抗仿真实验是作战分析、模拟训练和基于仿真的装备活动的核心手段,其智能化、自动化水平直接影响实验效能和战斗力的生成。针对传统仿真实验存在的实验设计、模型构建、导调控制和人机交互效率低等问题,参考MCP协议提出大模型赋能战术对抗仿真实验的体系架构。该架构包含基础层、工具资源层、AI Agent层、赋能层、应用层,这5层架构自顶向下牵引,自底向上逐层整合,可实现大小模型与数据资源和传统小模型的耦合聚合,并赋能基于仿真的各项军事活动。在此基础上,重点研究讨论了大模型赋能战术对抗仿真实验的具体路径:大模型赋能仿真实验设计,大模型赋能决策模型构建,大模型赋能导调控制。最后,分析了大模型赋能战术对抗仿真实验面临的挑战,并给出了相应的应对措施。

关键词: 大语言模型, 战术对抗仿真实验, 仿真实验设计, 决策模型, 导调控制

Abstract: Tactical confrontation simulation experiments are the core means of operational analysis,simulation training,and equipment activities based on simulation,and their levels of intelligence and automation directly impact the effectiveness of experiments and the generation of combat capabilities.To address the low efficiency issues in experimental design,model construction,scenario control,and human-computer interaction in traditional simulation experiments,a system architecture for empowering tactical confrontation simulation experiments with large language models is proposed,referencing the MCP protocol.This architecture consists of five layers:the foundation layer,tool resource layer,AI agent layer,empowerment path layer,and application layer.The five-layer architecture is guided top-down and integrated bottom-up layer by layer,enabling the coupling and aggregation of large and small models with data resources and traditional small models,and empowering various military activities based on simulation.Based on this,the specific paths of large model empowerment in tactical confrontation simulation are discussed in detail:large model empowerment in simulation experiment design,large model empowerment in decision-making model construction,and large model empowerment in scenario control.Finally,the challenges and countermeasures are analyzed.

Key words: LLM, Tactical confrontation simulation experiment, Simulation experiment design, Simulation agent, Direction and control

中图分类号: 

  • TP391
[1]LEI K H,LI Y L,SHEN X H.Research on the Application of Large Models in Military Action Planning[J].Military Digest,2025(5):32-35.
[2]XU R M.Combat Modeling and Simulation[M].Beijing:Mili-tary Science Press,2012.
[3]LI C,YANG B,WANG Y F,et al.Research on Army Combined Operations Experimentation Systems[M].Beijing:Ordnance Industry Press,2022.
[4]SI G,WU X,WANG Y,et al.Introduction to Joint Operations Experimentation[M].Beijing:National Defense Industry Press,2024.
[5]CAO Y H,GUAN Q B,BAI H B.Theory and Technology of Combat Experimentation[M].Beijing:National Defense Industry Press,2013.
[6]HU JW.Combat Simulation Experimental Design and Analysis[M].Beijing:National Defense Industry Press,2010
[7]Palantir Technologies.AIP:AI Platform for Defense[EB/OL].(2023).https://www.palantir.com/solutions/defense/.
[8]XIN X.Development Status of Generative Artificial Intelligence in the U.S.Military Command and Control Domain[N].China Aviation News,2024-06-18(3961).
[9]Scale AI.Force-Multiply with Donovan in Action[EB/OL].[2025-04-07].https://scale.com/donovan.
[10]GOECKS V G,WAYTOWICH N R.COA-GPT:GenerativePre-trained Transformers for Accelerated Course of Action Development in Military Operations[C]//Proceedings of the NATO Science and Technology Organization Symposium(ICMCIS).Koblenz,Germany:NATO Science and Technology Organization,2024.
[11]SUN Y X,ZHAO J J,XIE Y X,et al.Self-generating war game AI:Task planning of double-layer agent based on large language model[J/OL].Control and Decision.https://doi.org/10.13195/j.kzyjc.2023.1497.
[12]WENG L.LLM-powered Autonomous Agents[DB/OL].(2023-06-23)[2024-06-30].https://lilianweng.github.io/posts/2023-06-23-agent/.
[13]SUN Y F,WU J,LI Z,et al.Research on Large Sequence Model for Wargame Simulation[C]//Proceedings of the 10th “Complexity of War and War Simulation” High-Level Academic Seminar.National Defense University Joint Warfare College,2023:30-37.
[14]Yuanting Technology launches decision optimization big model and intelligent agent suite[EB/OL].(2025-04-03)[2025-04-07].https://mp.weixin.qq.com/s/_nzl_QNMOk6usdB9LplpHA.
[15]YOUNGJOON L,TAEHYUN P,YUNHO L,et al.Exploring Potential Prompt Injection Attacks in Federated Military LLMs and Their Mitigation[J].arXiv:2501.18416,2025.
[16]REN B C,QIAO S F,YU W H,et al.KnowRL:ExploringKnowledgeable Reinforcement Learning for Factuality[J].ar-Xiv:2506.19807v1,2025.
[17]ALBERT T, SUN Z F,CHRISTOPHER D S.Model-Preserving Adaptive Rounding[J].arXiv:2505.22988v1,2025.
[18] KIM J H,KIM J,KWON S,et al.KVzip:Query-Agnostic KV Cache Compression with Context Reconstruction[J].arXiv:2505.23416,2025.
[19]DING X, SUN R, ZHANG Y J,et al.DipSVD:Dual-importance Protected SVD for Efficient LLM Compression[J].arXiv:2506.20353,2025.
[20]WANG Z R,LAN T F,SU Z Y,et al.Towards Efficient LLM Storage Reduction via Tensor Deduplication and Delta Compression[J].arXiv:2505.06252,2025.
[21]LIU X Y,WEN Z C,WANG S B,et al.Shifting AI Efficiency From Model-Centric to Data-Centric Compression[J].arXiv:2505.19147v1,2025.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!