计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 190-200.doi: 10.11896/jsjkx.250500127

• 人工智能 • 上一篇    下一篇

量子元启发式算法及其应用综述

阮宁1, 李淳1, 马昊月2, 贾异3, 李涛2   

  1. 1 河南师范大学软件学院 河南 新乡 453007
    2 河南师范大学计算机与信息工程学院 河南 新乡 453007
    3 国家自然科学基金委员会高技术研究发展中心 北京 100006
  • 收稿日期:2025-05-27 修回日期:2025-09-11 出版日期:2025-10-15 发布日期:2025-10-14
  • 通讯作者: 李涛(litao0116@163.com)
  • 作者简介:(ruanning@htu.edu.cn)
  • 基金资助:
    国家自然科学基金(62406104);河南省科技攻关项目(252102211012);河南省高等学校重点科研项目(25A520029);河南省高等学校青年骨干教师培养计划(2025GGJS033)

Review of Quantum-inspired Metaheuristic Algorithms and Its Applications

RUAN Ning1, LI Chun1, MA Haoyue2, JIA Yi3, LI Tao2   

  1. 1 School of Software,Henan Normal University,Xinxiang,Henan 453007,China
    2 School of Computer and Information Engineering,Henan Normal University,Xinxiang,Henan 453007,China
    3 National Natural Science Foundation of China,High Tech Research and Development Center,Beijing 100006,China
  • Received:2025-05-27 Revised:2025-09-11 Online:2025-10-15 Published:2025-10-14
  • About author:RUAN Ning,born in 1988,postgra-duate,lecturer,is a member of CCF(No.W0391M).His main research interests include evolutionary computing,graph machine learning and data mi-ning.
    LI Tao,born in 1990,Ph.D,associate professor,is a member of CCF(No.F5541M).His main research interests include evolutionary computing and machine learning.
  • Supported by:
    National Natural Science Foundation of China(62406104),Key Scientific and Technological Project of Henan Province(252102211012),Key Research Project Plan for Higher Education Institutions in Henan Province(25A520029) and Training Program for Young Backbone Teachers in Higher Education Institutions of Henan Province(2025GGJS033).

摘要: 量子元启发式算法是将量子计算应用到元启发式算法中而开发出来的。该类算法擅于求解组合和数值优化问题,具有加速收敛、增强探索和开发能力等特点,且能获得比传统元启发式算法更高的性能结果。文中主要概述和回顾量子元启发式算法的理论方法及其应用。首先对量子计算的基本概念和计算原理进行阐述,并分析目前量子计算领域亟需解决的挑战性问题;然后阐述6种经典量子元启发式算法运行的基本原理,分析最新的研究进展,概括它们在求解特定领域问题的优劣势,并展示量子元启发式算法在不同学科及工程场景中的应用;最后对量子元启发式算法理论方法存在的问题进行剖析与探讨,并总结未来量子元启发式算法理论和应用发展方向。

关键词: 量子计算, 元启发式算法, 进化计算, 全局最优, 智能优化

Abstract: The quantum meta heuristic algorithm is developed by applying quantum computing to the meta-heuristic algorithm.This kind of algorithm is good at solving combinatorial and numerical optimization problems,and has the characteristics of acce-lerated convergence,enhanced exploration and development capabilities,and can obtain higher performance results than traditional meta-heuristic algorithms.This paper mainly summarizes and reviews the theoretical methods and applications of quantum meta-heuristic algorithms.Firstly,this paper expounds the basic concepts and principles of quantum computing,and analyzes the challenging problems that need to be solved urgently in the field of quantum computing.Then,this paper expounds the basic principles of six classical quantum meta-heuristic algorithms,analyzes the latest research progress,gives their advantages and disadvantages in solving domain-specific problems,and demonstrates the application of quantum meta-heuristic algorithms in different disciplines and engineering scenarios.Finally,this paper analyzes and explores the existing problems in the theories and methods of quantum meta-heuristic algorithms,and summarizes the future development direction of the theory and application of quantum meta-heuristic algorithms.

Key words: Quantum computing,Metaheuristics algorithm,Evolutionary computing,Global optimum,Intelligent optimization

中图分类号: 

  • TP391
[1]TIAN X,LI J.A novel improved fruit fly optimization algorithm for aerodynamic shape design optimization [J].Knowledge-Based Systems,2019,179:77-91.
[2]GARCÍA-RÓDENAS R,JIMÉNEZ LINARES L,LÓPEZ-GÓMEZ J A.A Memetic Chaotic Gravitational Search Algorithm for unconstrained global optimization problems [J].Applied Soft Computing,2019,79:14-29.
[3]ZAMANI H,NADIMI-SHARAKI M H,GANDOMI A H.CCSA:Conscious neighborhood-based crow search algorithm for solving global optimization problems [J].Applied Soft Computing,2019,85:105583.
[4]CHEN H L,XU Y T,WANG M J,et al.A balanced whale optimization algorithm for constrained engineering design problems [J].Applied Mathematical Modelling,2019,71:45-59.
[5]LONG W,WU T B,LIANG X M,et al.Solving high-dimensio-nal global optimization problems using an improved sine cosine algorithm [J].Expert Systems with Applications,2019,123:108-126.
[6]GARG H.A hybrid GSA-GA algorithm for constrained optimization problems [J].Information Sciences,2019,478:499-523.
[7]CAN E.Variable determined for optimization of alternating energy on the load by the adaptive Taguchi method [EB/OL].https://pdfs.semanticscholar.org/f421/524b2f67bbd49e0e7109f372584003e481e2.pdf.
[8]NARAYANAN A,MOORE M.Quantum-inspired genetic algorithms[C]//Proceedings of IEEE International Conference on Evolutionary Computation.IEEE,1996:61-66.
[9]MENON P S,RITWIK M.A Comprehensive but not Complicated Survey on Quantum Computing [J].IERI Procedia,2014,10:144-152.
[10]KIRKPATRICK S,GELATT C D,VECCHI M P.Optimization by Simulated Annealing [J].Science,1983,220(4598):671-680.
[11]RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.GSA:A Gravitational Search Algorithm [J].Information Sciences,2009,179(13):2232-2248.
[12]MALOSSINI A,BLANZIERI E,CALARCO T.Quantum Genetic Optimization [J].IEEE Transactions on Evolutionary Computation,2008,12(2):231-241.
[13]DENG W,LIU H,XU J,et al.An Improved Quantum-Inspired Differential Evolution Algorithm for Deep Belief Network [J].IEEE Transactions on Instrumentation and Measurement,2020,69(10):7319-7327.
[14]SUN J,FENG B,XU W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of the 2004 Congress on Evolutionary Computation.IEEE,2004:325-331.
[15]MA Y,TIAN W J,FAN Y Y.Improved quantum ant colony algorithm for solving TSP problem[C]//2014 IEEE Workshop on Electronics,Computer and Applications.IEEE,2014:453-456.
[16]AGRAWAL R K,KAUR B,SHARMA S.Quantum basedWhale Optimization Algorithm for wrapper feature selection [J].Applied Soft Computing,2020,89(2):106092.
[17]KRAUSS T,MCCOLLUM J.Solving the network shortest path problem on a quantum annealer [J].IEEE Transactions on Quantum Engineering,2020,1(1):1-12.
[18]NIKOUEI R,RASOULI N,TAHMASEBI S,et al.A quantum-annealing-based approach to optimize the deployment cost of a multi-sink multi-controller wsn [J].Procedia Computer Science,2019,155(1):250-257.
[19]HUSSAIN H,JAVAID M B,KHAN F S,et al.Optimal control of traffic signals using quantum annealing [J].Quantum Information Processing,2020,19:312.
[20]RAJDEEP K N,HIMANSHU T,TRAVIS S H.A review ofmachine learning classification using quantum annealing for real-world applications [J].SN Computer Science,2021,2(5):365.
[21]PÉREZ ARMAS L F,CREEMERS S,DELEPLANQUE S.Solving the resource constrained project scheduling problem with quantum annealing [J].Scientific Reports,2024,14:16784.
[22]ZENG Q G,CUI X P,LIU B,et al.Performance of quantum annealing inspired algorithms for combinatorial optimization problems [J].Communications Physics,2024,7:249.
[23]HABA R,MANO T,UEDA R,et al.Routing and schedulingoptimization for urban air mobility fleet management using quantum annealing [J].Scientific Reports,2025,15:4326.
[24]LI C,YAN R W,DING Y,et al.Feature Selection and SVM Parameter Optimization Based on IBQGSA in Intrusion Detection [J].Computer Engineering and Design,2017,38(8):2227-2234.
[25]LI H T,ZHANG W.SVM Flame Recognition Algorithm Based on Quantum Gravitational Search Algorithm [J].Electronic Measurement Technology,2019,42(18):81-84.
[26]HUANG B L,YUAN X L.Optimal Capacity Allocation ofStand-alone Microgrid Based on LQ-GSA [J].Electric Power Engineering Technology,2019,38(6):47-54.
[27]KUMAR Y,VERMA S K,SHARMA S.An Improved Quantum-Inspired Gravitational Search Algorithm to Optimize the Facial Features [J].International Journal of Pattern Recognition and Artificial Intelligence,2021,35(14):2156004.
[28]JINDAL S,SACHDEVA M,KUMAR A K S.A novel quantum-behaved binary firefly algorithm with gravitational search algorithm to optimize the features for human activity recognition [J].International Journal of Modern Physics C,2022,33(11):2250146.
[29]TONG L,YANG L,ZHAO X,et al.How can a hybrid quantum-inspired gravitational search algorithm decrease energy consumption in IoT-based software-defined networks? [J].Sustainable Computing:Informatics and Systems,2023,40:100920.
[30]JINDAL S,SACHDEVA M,KUSHWAHA A K S.Quantum behaved intelligent variant of gravitational search algorithm with deep neural networks for human activity recognition [J].Kuwait Journal of Science,2023,50(2A):1-20.
[31]GHOSH S,KUILA P,BEY M,et al.Quantum-inspired gravitational search algorithm-based low-price binary task offloading for multi-users in unmanned aerial vehicle-assisted edge computing systems [J].Expert Systems with Applications,2025,263:125762.
[32]SHARMA K P,LAL G,SHUKLA M,et al.Quantum behaved binary gravitational search algorithm with random forest for twitter spammer detection [J].Results in Engineering,2025,25:103993.
[33]DO T Q,NGUYEN H T,MCNIVEN B D E,et al.An auto-adjusting hybrid quantum genetic algorithm-Spectre platform for the multi-objective optimization of analog circuit sizing [J].Alexandria Engineering Journal,2025,116:574-585
[34]GENCER K,GENCER G.Hybrid deep learning approach for brain tumor classification using EfficientNetB0 and novel quantum genetic algorithm [J].PeerJ Computer Science,2025,11:e2556.
[35]FAÍLDE D,VIQUEIRA J D,MUSSA JUANE M,et al.Using differential evolution to avoid local minima in variational quantum algorithms [J].Scientific Reports,2023,13:16230.
[36]KUMAR J,SAXENA D,SINGH A K,et al.A quantum con-trolled-NOT neural network-based load forecast and management model for smart grid [J].IEEE Systems Journal,2023,17(4):5714-5725.
[37]DEY A,BHATTACHARYYA S,DEY S,et al.A quantum inspired differential evolution algorithm for automatic clustering of real life datasets [J].Multimedia Tools and Applications,2024,83:8469-8498.
[38]BEY M,KUILA P,NAIK B B.Quantum-inspired differentialevolution with decoding using hashing for efficient user allocation in edge computing environment [J].IEEE Transactions on Emerging Topics in Computing,2024,13(2):481-495.
[39]PRIYANKA B,NAIK B B,REDDY T P.Energy and cost aware workflow offloading using quantum inspired differential evolution in the cloud environments [J].Journal of Network and Systems Management,2025,33(1):19.
[40]JIN P.Research on Improved Quantum-behaved Particle Swarm Optimization and Its Application in Optimization Problems [D].Xuzhou:China University of Mining and Technology,2019.
[41]RADHA R,GOPALAKRISHNAN R.A medical analytical system using intelligent fuzzy level set brain image segmentation based on improved quantum particle swarm optimization [J].Microprocessors and Microsystems,2020,79:103283.
[42]XU Y X,ZHANG M J,WANG D G.Chaotic Encoding Quantum Particle Swarm Optimization Algorithm for Flexible Job Shop Scheduling Problem [J].Journal of System Simulation,2024,36(10):2371-2382.
[43]GONG C,ZHOU N,XIA S,et al.Quantum particle swarm optimization algorithm based on diversity migration strategy [J].Future Generation Computer Systems,2024,157:445-458.
[44]JIANG Y,ZHENG K,ZHANG M,et al.An enhanced Lévyflight quantum particle swarm optimization for stress monitoring in jacket wind turbines [J].Ocean Engineering,2025,324:120704.
[45]XIA G Q,HAN Z W,ZHAO B,et al.Global Path Planning for Unmanned Surface Vehicle Based on Improved Quantum Ant Colony Algorithm [EB/OL].https://onlinelibrary.wiley.com/doi/10.1155/2019/2902170.
[46]WANG Y,MA L J,ZHANG F Q,et al.Collision DetectionMethod in Virtual Reality Based on Quantum Ant Colony Algorithm [J].Journal of Nanjing University of Science and Technology,2022,46(6):735-741.
[47]BI Z Q,YU X W,WANG B N,et al.Fast Localization Tech-nique for Fault Sections in Distribution Networks Based on Quantum Ant Colony Algorithm [J].Journal of Shanghai Jiao Tong University,2024,58(5):693-708.
[48]SARKAR M,PRADHAN J,SINGH A K,et al.A novel hybrid quantum architecture for path planning in quantum-enabled autonomous mobile robots [J].IEEE Transactions on Consumer Electronics,2024,70(3):5597-5606.
[49]SUSEENDHAR P,SRIDHAR K P.A niche quantum ant colony multifaceted routing algorithm for WSN-based IoT networks in the emerging quantum industry [J].Journal of Internet Services and Information Security,2024,14(4):418-435.
[50]NARDIN A,D’ANDREAGIOVANNI F.A quantum-inspiredant colony optimization algorithm for parking lot rental to shared e-scooter services [J].Algorithms,2024,17(2):80.
[51]EGGER D J,GAMBELLA C,MARECEK J,et al.Quantumcomputing for finance:State-of-the-art and future prospects [J].IEEE Transactions on Quantum Engineering,2020,1:1-24.
[52]CHAKRABARTI S,KRISHNAKUMAR R,MAZZOLA G,et al.A threshold for quantum advantage in derivative pricing [J].Quantum,2021,5:463-504.
[53]MARTYN J M,RALL P.Halving the cost of quantum algorithms with randomization [J].NPJ Quantum Information,2025,11(47):1-11.
[54]NEUKART F,COMPOSTELLA G,SEIDEL C,et al.Traffic flow optimization using a quantum annealer [J].Frontiers in ICT,2017,4:29.
[55]YARKONI S,LEIB M,SKOLIK A,et al.Volkswagen andquantum computing:An industrial perspective [J].Digitale Welt,2019,3(2):34-37.
[56]SHOR P W.Algorithms for quantum computation:discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science.IEEE,1994:124-134.
[57]MONE G.The quantum threat [J].Communications of theACM,2020,63(7):12-14.
[58]SCHULD M,PETRUCCIONE F.Supervised Learning withQuantum Computers [M].Cham:Springer,2018.
[59]WITTEK P.Quantum Machine Learning:What Quantum Computing Means to Data Mining [M].New York:Academic Press,2014.
[60]WIEBE N,BRAUN D,LLOYD S.Quantum algorithm for data fitting [J].Physical Review Letters,2012,109(5):050505.
[61]LUO M X,CHEN X B,YANG Y X,et al.Geometry of quantum computation with qudits [J].Scientific Reports,2014,4(1):4044.
[62]SCHULD M,SINAYSKIY I,PETRUCCIONE F.Prediction by linear regression on a quantum computer [J].Physical Review A,2016,94(2):022342.
[63]WANG G M,Quantum algorithm for linear regression [J].Physical Review A,2017,96(1):012335.
[64]LLOYD S,MOHSENI M,REBENTROST P.Quantum algo-rithms for supervised and unsupervised machine learning [J].arXiv:1307.0411,2013.
[65]LLOYD S,REBENTROST P,MOHSENI M.Quantum principal component analysis [J].Nature Physics,2014,10(9):631-633.
[66]REBENTROST P,MOHSENI M,LLOYD S.Quantum support vector machine for big data classification [J].Physical Review Letters,2014,113(13):130503.
[67]REBENTROST P,BROMLEY T R,WEEDBROOK C,et al.Quantum recurrent neural network [J].Physical Review A,2018,98(4):042308.
[68]SHI J J,XIAO Z M.QuanTest:entanglement-guided testing of quantum neural network systems [J].ACM Transactions on Software Engineering and Methodology,2025,34(2):1-32.
[69]SCHULD M,SINAYSKIY I,PETRUCCIONE F,et al.Thequest for a quantum neural network [J].Quantum Information Processing,2014,13(11):2567-2586.
[70]SCHULD M,SINAYSKIY I,PETRUCCIONE F.Simulating a perceptron on a quantum computer [J].Physics Letters A,2015,379(7):660-663.
[71]WAN K H,DAHLSTEN O,KRISTJÁNSSON H,et al.Quantum generalisation of feedforward neural networks [J].NPJ Quantum Information,2017,3(1):36-43.
[72]WIEBE N,KAPOOR A,SVOR K M.Quantum perceptron mo-dels[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Curran Associates Inc.,2016:4006-4014.
[73]YAMAMOTO A Y,SUNDQVIST K M,LI P,et al.Simulation of a multidimensional input quantum perceptron [J].Quantum Information Processing,2018,17(6):128-139.
[74]SCHÜTZHOLD R.Pattern recognition on a quantum computer [J].Physical Review A,2003,67(6):062311.
[75]TRUGENBERGER C A.Quantum pattern recognition [J].Quantum Information Processing,2002,1(6):471-493.
[76]VENTURA D,MARTINEZ T.Quantum associative memory[J].Information Sciences,2000,124(1):273-296.
[77]LOW G H,YODER T J,CHUANG I L.Quantum inference on Bayesian networks [J].Physical Review A,2014,89(6):062315.
[78]SENTÍS G,CALSAMIGLIA J,MUÑOZ-TAPIA R,et al.Quantum learning without quantum memory [J].Scientific Reports,2012,2(708):1-8.
[79]BARRY J,BARRY D T,AARONSON S.Quantum partially observable Markov decision processes [J].Physical Review A,2014,90(3):032311.
[80]CLARK L A,HUANG W,BARLOW T M,et al.Hidden quantum Markov models and open quantum systems with instantaneous feedback[C]//Interdisciplinary Symposium on Complex Systems.Cham:Springer,2015:143-151.
[81]RATH M,DATE H.Quantum powered credit risk assessment:a novel approach using Hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis [J].EPJ Quantum Technology,2025,12(75):1-27.
[82]WIEBE N,KAPOOR A,SVORE K.Quantum deep learning[J].Quantum Information & Computation,2016,16(7/8):541-587.
[83]AMIN M H,ANDRIYASH E,ROLFE J,et al.Quantum Boltzmann machine [J].Physical Review X,2018,8(2):021050.
[84]WANG Z H,CHOONG B C M,HUANG T,et al.Is quantum optimization ready? An effort towards neural network compression using adiabatic quantum computing [J].Future Generation Computer Systems,2026,174:107908.
[85]KIEFEROVÁ M,WIEBE N.Tomography and generative data modeling via quantum Boltzmann training [J].Physical Review A,2017,96(6):062327.
[86]GAO X,ZHANG Z Y,DUAN L M.A quantum machine lear-ning algorithm based on generative models [J].Science Advances,2018,4(12):eaat9004.
[87]LANGIONE M,TILLEMANN-DICK C,KUMAR A,et al.Where will quantum computers create value-and when? [R].Boston:Boston Consulting Group,2019.
[88]DEBENEDICTIS E P.A future with quantum machine learning [J].Computer,2018,51(2):68-71.
[89]YAN F,VENEGAS A S E.Lessons from Twenty Years ofQuantum Image Processing [J].ACM Transactions on Quantum Computing,2025,6(1):1-29.
[90]LORENZ R,PEARSON A,MEICHANETZIDIS K.QNLP inpractice:Running compositional models of meaning on a quantum computer [J].Journal of Artificial Intelligence Research,2023,76:1305-1342.
[91]FEYNMAN R P.Simulating physics with computers [J].International Journal of Theoretical Physics,1982,21(6/7):467-488.
[92]BUDDE F,VOLZ D.The next big thing? Quantum computing’s potential impact on chemicals[M].New York:McKinsey & Company,2019.
[93]KÜHN M,ZANKER S,DEGLMANN P,et al.Accuracy and resource estimations for quantum chemistry on a near-term quantum computer [J].Journal of Chemical Theory and Computation,2019,15(9):4764-4780.
[94]NEUKART F.Quantencomputing in der Automobilindustrie[J].Digitale Welt,2021,5(2):34-37.
[95]ZIEGLER M,LEONHARDT T.Quantum computing.Appliednow [J].Digitale Welt,2019,3(2):50-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!