计算机科学 ›› 2006, Vol. 33 ›› Issue (9): 135-139.

• 计算机网络与信息安全 • 上一篇    下一篇

一种新颖混合贝叶斯分类模型研究

李旭升 郭耀煌   

  1. 西南交通大学经济管理学院,成都610031
  • 出版日期:2018-11-17 发布日期:2018-11-17

LI Xu-Sheng, GUO Yao Huang (School of Economics and Management, Southwest Jiaotong University, Chengdu 610031)   

  • Online:2018-11-17 Published:2018-11-17

摘要: 朴素贝叶斯分类器(Naive Bayesian classifier,NB)是一种简单而有效的分类模型,但这种分类器缺乏对训练集信息的充分利用,影响了它的分类性能。通过分析NB的分类原理,并结合线性判别分析(Linear Discriminant Analysis,LDA)与核判别分析(Kernel Discriminant Analysis,KDA)的优点,提出了一种混合贝叶斯分类模型DANB(Discriminant Analysis Naive Bayesian classifier,DANB)。将

关键词: 朴素贝叶斯分类器 线性判别分析 核判别分析 TAN分类器

Abstract: Naive Bayesian classifier (NB) is a simple and effective classification model, but it is unable to make the best of the information of the training dataset, thus affecting its classification performance. On the basis of analyzing the classification princi

Key words: Naive Bayesian classifier,Linear discriminant analysis,Kernel discriminant analysis,TAN classification

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!