计算机科学 ›› 2008, Vol. 35 ›› Issue (7): 166-169.

• • 上一篇    下一篇

核子类凸包选样的核最近邻凸包分类器

  

  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    国家自然基金(the National Science Foundation of Chinaunder Grant No.60472060andNo.60632050).

  • Online:2018-11-16 Published:2018-11-16

摘要: 为了保证核最近邻凸包分类器有效地处理大训练集的应用问题,本文提出一种与该分类器相结合的核子类凸包样本选择方法。核子类凸包样本选择方法是一个类内迭代算法,该算法在核空间里每次迭代选择一个距离选择集样本张成子类凸包最远的样本。在Head Pose Image Database系列1图像集上的实验中,本文方法不但可以取得较高的识别率,而且与未经选样的核最近邻凸包分类器相比,其执行速度要快许多。

关键词: 样本选择 凸包核最近邻凸包 核子类凸包样本选择 模式分类 人脸识别

Abstract: Kernel nearest neighbor convex hull (KNNCH) classifier involves solving convex quadratic programming problems, which requires large memory and long computation time for large-scale problem. Therefore, it is important for KNNCH classifier to reduce the com

Key words: Samples selection, Convex hull, Kernel nearest neighbor convex hull, Kernel subclass convex hull sample selection, Pattern classification, Face recognition

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!