计算机科学 ›› 2009, Vol. 36 ›› Issue (7): 79-81.doi: 10.11896/j.issn.1002-137X.2009.07.018

• 计算机网络与信息安全 • 上一篇    下一篇

长程突发通信量的分数自回归预测

闻勇,朱光喜,谢长生   

  1. (华中科技大学计算机科学与技术学院 武汉430074);(华中科技大学电子与信息工程系 武汉430074)
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金重大项目(No. 60496315),国家自然科学基金(No. 605020230) ,国家863计划(No. 2003AA12331005)资助。

Fractional Autoregressive Prediction for Long Range Bursty Traffic

WEN Yong,ZHU Guang-xi,XIE Chang-sheng   

  • Online:2018-11-16 Published:2018-11-16

摘要: 以数据包传输的通信量在不同网络条件下均表现出自相似性,自相似通信量在各时间尺度上均具有长程突发特性,其是以泊松过程为模型所描述的短程相关通信量所无法描述的。近来对自相似通信量的高精度测量与研究证实:网络中广泛存在的重尾特性是通信量自相似产生的原因。同时充分提取通信量的自相似性与重尾特性相关信息,是准确预测长程突发通信量的关键。在一种a-基于平稳过程的自相似通信量模型基础上,提出两种独立的自回归预测方法:FAR(Fractional AutoRegressive)预测、FNAR(Fractional Nonfienar AutoRegressive)预测。对这两种预测值进行不同方案的混合预测得到最终预测结果,进一步提高预测精度。

关键词: 长程突发,通信量,自回归,预测

Abstract: The traffic with data packet transmission in various network conditions exhibits convincingly self-similarity causing the long range burstiness which cannot be captured by traditional telecommunication traffic models based on Poisson process or Markov process. The updated explicit high-resolution measurement and researches for the traffic reveal that the heavy tailness existing extensively in the network brings about the self-similarity of the traffic. The information extraction from the self-similarity and long range dependence is the key fact for the exact prediction of the long range bursty traffic. Two distinctive AutoRegressive predictors based on c}stable self-similar traffic model were presented. The predictors including FAR(Fractional AutoRegressive) ,FNAR(Fractional Nonlinear AutoRegressive) can minimite the dispersion according to the criteria with infinite variance. The final predicted values with the different schemes were obtained by combining the previous two individual predicted values for the higher predicted precision.

Key words: Long range dependence, Traffic, Autoregressive, Prediction

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!