计算机科学 ›› 2009, Vol. 36 ›› Issue (8): 49-53.

• 计算机网络与信息安全 • 上一篇    下一篇

基于XJoin的细粒度无阻塞连接算法

陈刚,李国徽,顾晋广,杨兵,陈辉,唐向红   

  1. (华中科技大学计算机学院 武汉 430074);(武汉科技大学计算机学院 武汉 430065);(江西财经大学软件学院 南昌 330013)
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受863国家高技术研究发展计划(2007AA01Z309),国家自然科学基金(60803160,60873030),国防预研基金资助。

Fine-grained Non-blocking Join Algorithm Based on XJoin

CHEN Gang,LI Guo-hui,GU Jin-guang,YANG Bing,CHEN Hui,TANG Xiang-hong   

  • Online:2018-11-16 Published:2018-11-16

摘要: 连接拥塞、负载不均衡和临时性网络中断,使得传统查询处理技术难以处理广域网下的数据连接。无阻塞连接查询算法通过调用后台进程能够有效处理不稳定网络中的不确定性并隐藏数据到达的中断情况。因为逐渐增长的外存数据难以在较短的时间间隔内被一次性处理完,所以像XJoin这样的经典无阻塞连接算法不能很好地处理间隔时间较短的不稳定网络下的查询连接。提出一种新的无阻塞连接算法XJoin-FG,将一次粗粒度的事务根据间隔时间分解为多个部分,并且采用细粒度的时间戳来避免重复数据结果的产生。仿真实验采用Internet上的跟踪数据

关键词: 连接,细粒度,无阻塞,不稳定网络

Abstract: Wide-area distribution raises significant performance problems for traditional query processing technictues as data access becomes less predictable due to link congestion, load imbalances, and temporary outages. Norrblocking joining query execution is a promising approach to coping with unpredictability in unreliable network and hiding intermittent delays in data arrival by reactively scheduling background processing. Classical non-blocking two-way joining techniquc such as XJoin fail to deliver acceptable performance in such a scenario where gradually augmenting partition could not be dealt with during one relatively short intermittent delay. We developed a novel reactively-scheduled non-blocking join, called XJoin-FG,disparting one coarse-grained transaction into several parts according to the size of interval time.XJoin-FG employed fincgrained timestamp mechanism to avoid duplicate results. Using the optimization implementation along with emulational data obtained by monitoring Internet data delivery,we show that XJoin-FG is an effective solulion for providing fast ctuery responses to users even in the presence of the longer-term of data sources appeared as unavailability.

Key words: Join,Fine-grained,Non-blocking,Unreliable network

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!