计算机科学 ›› 2010, Vol. 37 ›› Issue (2): 175-179.

• 人工智能 • 上一篇    下一篇

多目标进化算法中多样性策略的研究

谢承旺,丁立新   

  1. (武汉大学软件工程国家重点实验室 武汉430072)
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受高等学校博士点基金项目(No. 20070486081 ) ,湖北省杰出青年人才基金(No.2005ABB017)资助。

Diversity Strategies on Multiobjective Evolutionary Algorithms

XIE Cheng-wang,DING Li-xin   

  • Online:2018-12-01 Published:2018-12-01

摘要: 进化多目标优化中由于进化算子固有的随机误差以及进化过程中选择压力和选择噪音的影响使得进化群体容易丧失多样性,而保持进化群体的多样性不仅有利于进化群体搜索,而且也是多目标优化的重要目标。对多目标进化算法的多样性策略进行了分类,在统一的框架下描述了各种策略的机制,并分析了各自的特性。随后,分析并比较了多样性保持算子的复杂度。最后,证明了一般意义下多目标进化算法的收敛性,指出在设计新的多样性策略中需要保证进化世代间的单调性,避免出现退化现象。

关键词: 多目标进化算法,多样性策略,算子复杂度,收敛性

Abstract: The intrinsic random errors on the evolutionary operators and the pressure of selection and the noise of seleclion in the evolutionary process easily make the loss of diversity on the evolutionary population. But the maintenance of diversity on the population is very important because it is not only benificial to the search process but also becomes the essential objective in multiobjective optimization. With the unified framework, this paper first classifiesd the diversity strategy on the MOEAs and described the principles and mechanisms on different types of diversity strategies and analyzed their characteristics. Then this paper analyzed the complexity of these diversity operators. At last, this paper proved the convergence of MOEAs in the general sense and pointed out that it is necessary to keep the monotonicity in the evolutionary population and avoid the degradation of population as the design of new diversity strategy.

Key words: Multio均ective evolutionary algorithms, Diversity strategics, Complexity, Convergence

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!