计算机科学 ›› 2010, Vol. 37 ›› Issue (7): 220-224.

• 人工智能 • 上一篇    下一篇

短期负荷多变量混沌时间序列正则化回归局域预测方法

任海军,张晓星,孙才新,文俊浩   

  1. (输配电装备及系统安全与新技术国家重点实验室 重庆400044), (重庆大学软件学院 重庆400044)
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家白然科学基金(基于时空数据挖掘的配电网负荷预测模型及方法研究No. 50607023)资助。

Regulation Regression Local Forecasting Method of Multivariable Chaotic Time Series in Short-term Electrical Load

REN Hai-jun,ZHANG Xiao-xing,SUN Cai-xin,WEN Jun-hao   

  • Online:2018-12-01 Published:2018-12-01

摘要: 为提高短期负荷预测的精度,提出了多变量混沌时间序列正则化回归局域预测方法。选取对负荷影响程度最大的实感温度因素,构建了多变量时间序列。首先采用互信息法和最小预测误差法确定出时间序列延迟和嵌入维数,并依据确定的重构参数进行短期负荷多变量时间序列的相空间重构,针对局域预测法中邻近点个数少而不能满足最小二乘估计条件的问题,提出了基于正则化回归的多变量时间序列混沌局部预测模型。通过重庆某地区电力系统短期负荷预测的计算实例表明,该方法具有较强的自适应能力和较好的预测效果。

关键词: 多变量时间序列,相空间重构,短期负荷预测,正则化回归

Abstract: Regulation regression local forecasting method of multivariable chaotic time series in short term electricalload was proposed, in order to improve the forecasting accuracy of short-term electrical load. The multivariate time series were constructed, by choosing the effective temperature factors with the greatest impact on the load. Firstly, time delay and embedding dimension were confirmed with the methods of mutual information and the minimum predicting error. Secondly, according to reconstruction parameters, the phase space of short term load multivariate time series was reconstructed. Thirdly, aiming at few neighboring points in the partial predicting method that can not satisfy least square estimate condition, multivariate time series chaos partial forecasting model based on the regularized regression was presented. Moreover, such model was carried on in practical power load forecast(an electrical power in Chongqing),and the forecasting accuracy was enhanced.

Key words: Multivariate chaotic time series, Phase space reconstruction, Short term load forecasting, Regulation regression

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!