计算机科学 ›› 2010, Vol. 37 ›› Issue (8): 243-247.
• 人工智能 • 上一篇 下一篇
楼俊杰,徐从富,郝春亮
出版日期:
发布日期:
基金资助:
LOU Jun-jie,XU Cong-fu,HAO Chun-liang
Online:
Published:
摘要: 实体解析(Entity Resolution, ER)是数据挖掘过程中关键而又费时的一个步骤。华盛顿大学的I}omingos和Singla提出了基于马尔科夫逻辑网络(Markov Logic Networks, MLNs)的ER算法。基于此算法,在原有的MLNs体系中,引入了一个可变权重的规则,试图解决原有系统无法处理的实体二义性问题。实验证明,新算法能够有效缓解数据记录的二义性问题,并且在一定程度上提高了原始算法的精度。
关键词: ER, MLNs,可变权重
Abstract: Entity Resolution is a crucial and expensive step in the data mining process. Domingos and Singla of University of Washington proposed of well-founded, integrated solution to the entity resolution problem based on Markov Logic.This paper tried to improve Domingos and Singla's solution by adding a formula with a changeable weight to it, to handle the problem of ambiguity of entities that the original system cannot distinguish. The new algorithm can effectively handle ambiguity of entities, and improve accuracy compared with the original algorithm, which is proved by experiment s.
Key words: ER, MI_Ns, Changeable weight
楼俊杰,徐从富,郝春亮. 基于马尔科夫逻辑网络的实体解析改进算法[J]. 计算机科学, 2010, 37(8): 243-247. https://doi.org/
LOU Jun-jie,XU Cong-fu,HAO Chun-liang. Improvement of Entity Resolution Based on Markov Logic Networks[J]. Computer Science, 2010, 37(8): 243-247. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2010/V37/I8/243
Cited