计算机科学 ›› 2011, Vol. 38 ›› Issue (10): 256-258.

• 人工智能 • 上一篇    下一篇

基于记忆的SVM相关反馈算法

孙树亮,林雪云   

  1. (福建师范大学福清分校 福建350300)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Relevance Feedback Algorithm Based on Memory Support Vector Machines

SUN Shu-liana,LIN Xue-yun   

  • Online:2018-11-16 Published:2018-11-16

摘要: 支持向量机(SVM)方法并不假设样本的分布条件,它基于结构风险最小化原则,对小样本情况下的学习问 题给出最优解,并且在样本趋于无穷时能保持良好的一致收敛性。在SVM的基础上提出的MSVM方法,通过记忆 功能,用历次反馈的累积样本代替一次反馈样本,从而增加了学习样本数量,减小了查准率的振荡,提高了检索精度; 同时为了减轻用户负担,提出了记忆性标注。实验证明,MSVM方法可以避免因训练样本集过小而出现的局部最小 化的问题,能较为准确地分类图像库中的图像,同时有效地减轻了用户的负担。

关键词: 支持向量机,反馈,记忆性标注,累积样本

Abstract: Support vector machine(SVM) is based on the minimum of structure risk and used for small samples in ma- chine learning. Memory support vector machine(MSVM) feedback is based on SVM and used cumulation samples repla- cing feedback samples by memory. It reduces the risk of recall vibration. MSVM feedback also proposes memory label which is used for lightening user's burden. MSVM feedback is proved its superiority by relevant experiments.

Key words: Support vector machine,Feedback,Memory labcl,Cumulation sample

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!