计算机科学 ›› 2012, Vol. 39 ›› Issue (10): 294-299.

• 图形图像 • 上一篇    下一篇

基于新型光谱相似度量的高光谱影像谱聚类算法

陈伟,余旭初,张立福,张鹏强   

  1. (信息工程大学测绘学院 郑州450052) (中科院遥感应用研究所遥感科学国家重点实验室 北京100101)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Novel Spectral Similarity Measurement Based Spectral Clustering Algorithm in Hyperspectral Imagery

  • Online:2018-11-16 Published:2018-11-16

摘要: 高斯径向基函数是基于光谱向量间欧氏距离的度量,其对于同种地物光谱变化的适应性较弱,使得基于高斯径向基函数的高光谱影像谱聚类算法的性能下降。为了解决该问题,从光谱曲线形状描述出发,基于光谱角度余弦提出了一种新型光谱相似度量,并将其用于构建谱聚类算法的亲和度矩阵。最后利用多组高光谱数据进行了实验分析,结果证明了该算法的有效性。

关键词: 高光谱影像,谱聚类,规范割准则,光谱相似度量

Abstract: As the gaussian radial basis function (RBF) is based on the Euclidean distance of two spectral vectors, it is not sensitive for variation of spectral curves of a material, which results in decrease of the performance of the RI3F based spectral clustering for hyperspectral imagery degenerate. In order to solve this problem, according to the spectral curves similarity description, a novel spectral similarity measurement based on spectral angle cosine was proposed, and the measurement was used to build the affinity matrix used by spectral clustering algorithms. Finally, the experiments carried on with several hyperspectral data. The results of the experiments prove the validity of the proposed method.

Key words: Hyperspectral image, Spectral clustering, Normalized cut, Spectral similarity measurement

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!