计算机科学 ›› 2012, Vol. 39 ›› Issue (12): 177-180.

• 人工智能 • 上一篇    下一篇

基于加权两层图的混合推荐方法

陈泽 王国胤 胡峰   

  1. (重庆邮电大学计算机科学与技术研究所 重庆 400065)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Hybrid Recommendation Filtering Method Based

  • Online:2018-11-16 Published:2018-11-16

摘要: 结合用户一项目评分矩阵和项目一类别关联矩阵,提出了一种新的混合推荐模型。首先,利用用户一项目评分矩 阵和项目一类别矩阵,提出一种新的项目关联度度量方法,该方法根据项目的特征信息和当前评分数据的稀疏情况,动 态调节关联度的计算值,真实地反映彼此之间的关联度;其次,分别以项目关联度和用户一项目评分信息为权值,构建 一个基于用户一项目的加权两层图模型;在此基础上,从两层图的全局结构出发,结合随机游走算法给出了基于加权两 层图的推荐算法,以为用户提供个性化的项目推荐和用户推荐。实验结果表明,该算法相比文献中的其他推荐方法具 有更高的准确度。

关键词: 随机游走,混合推荐,项目类别,两层图

Abstract: Combined with the rating matrix of user-item and the correlation matrix of itenrcategory, a new hybrid rec- ommended model was proposed. First, a new correlation degree measuring algorithm was presented by using these two matrixes. This algorithm takes into account the feature information and dynamically adjusts the result based on the sparse situation of the rating data, truly reflects the degree of association with each other. Then, a new weighted two- layer graph model was constructed by using the item-item correlation degree and the user-item correlation degree as the weight. On this basis, starting from the global structure of the two-layer graph, the recommendation algorithm based on weighted two-layer graph was given by the random walk algorithm, to provide users with personalized item recommen- lotions and user recommendations. The experiments show that the algorithm compared to other recommended models in the references has higher accuracy.

Key words: Random walk, Hybrid recommendation filt}ring,Item category information,hwo-Layer graph

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!