计算机科学 ›› 2012, Vol. 39 ›› Issue (4): 60-62.
• 计算机网络与信息安全 • 上一篇 下一篇
杨宇舟,张凤荔,王勇
出版日期:
发布日期:
Online:
Published:
摘要: 网络异常检测技术是入侵检测领域研究的热点之一。在异常检测中,针对其存在的对训练集中关键数据的 选取不准确、选取过程耗时较长、检测的误报率过高等问题,结合经典的K-MEANS算法和分支定界算法,建立起一 种网络异常检测模型,以有效地提高在大量训练集中选取关键数据的准确率,同时降低数据选取的时耗。通过大量基 于著名的KDD Cup 1999数据集的实验,表明此模型能够达到较高的检则准确性,并能有效地控制检测错误报警的发 生。
关键词: 异常检测,K-MEANS,分支定界
Abstract: Network anomaly detection has become one of the focus research topics in the field of intrusion detection. However, issues on accurate selection of key date in training set, the long selection time, and the high rate of detection misstatement arc still unresolved. Regarding to those problems, to integrate K-MEANS and Branch and Bound Algo- rithm,and to build up a network anomaly detection model on it can significantly improve the accuracy of key data selec- tion,and reduce time consumption as well. A series of experiments on well known KDD Cup 1999 dataset demonstrate that the model can achieve a high detection accuracy and efficiently constrain the false alarms caused by detection.
Key words: Anomaly detection, K-MEANS, Branch and bound
杨宇舟,张凤荔,王勇. 基于K-MEANS聚类的分支定界算法在网络异常检测中的应用[J]. 计算机科学, 2012, 39(4): 60-62. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2012/V39/I4/60
Cited