计算机科学 ›› 2012, Vol. 39 ›› Issue (6): 194-197.
• 人工智能 • 上一篇 下一篇
何文垒,刘功申
出版日期:
发布日期:
Online:
Published:
摘要: 提出了一种以概念相关性为主要依据的名词消歧算法。与现有算法不同的是,该算法在WordNet上对两个语义之间的语义距离进行了拓展,定义了一组语义之间的语义密度,从而量化了一组语义之间的相关性。将相关性转化为语义密度后,再进行消歧。还提出了一种在WordNet上的类似LSH的语义哈希,从而大大降低了语义密度的计算复杂度以及整个消歧算法的计算复杂度。在SemCor上对该算法进行了测试和评估。
关键词: 消歧,名词消歧,语义密度,语义哈希
Abstract: Proposed a novel approach for noun sense disambiguation based on concept correlation. Different from existing algorithms, we extended the notion of semantic distance on WordNet by defining a semantic density for a group of word senses, thus quantizing the correlation among a group of word senses. We disambiguated noun sense after converting the correlation into semantic density. Besides, we also proposed an LSH like semantic hashing on WordNet.With semantic hashing, we greatly reduced the time complexity of calculating semantic density and that of the whole disambiguation algorithm. Experiments and evaluation of this novel approach on SemCor were made.
Key words: Disambiguation, Noun sense disambiguation, Semantic density, Semantic hashing
何文垒,刘功申. 基于语义密度的名词消歧算法[J]. 计算机科学, 2012, 39(6): 194-197. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2012/V39/I6/194
Cited