计算机科学 ›› 2012, Vol. 39 ›› Issue (9): 289-291.

• 图形图像 • 上一篇    下一篇

基于改进粒子群算法的图像闭值分割方法

章慧,龚声蓉,严云洋   

  1. (淮阴工学院计算机工程学院 淮安223003) (苏州大学计算机科学与技术学院 苏州215006)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Image Threshold Segmentation Method Based on Improved Particle Swarm Optimization

  • Online:2018-11-16 Published:2018-11-16

摘要: 针对图像提取问题,最优阂值选取是否合理对图像分割效果至关重要。在处理不同种类图像区域时,粒子群算法(PSO)由于早熟现象难以准确计算最优分割阂值,因此导致图像分割准确率低。为了提高图像分割准确率且准确地提取出图像目标,提出一种基于混沌粒子群算法(CPSO)的图像阂值分割方法。受益于混沌运行的通历性、对初始条件的敏感性等优点,CPSO很好地解决了PSO的粒子群过早聚集和陷入局部最优等难题,加快了全局搜索最优解的能力。采用具体图像对CPSO算法图像分割性能进行仿真实验,结果表明,相比于其它图像分割算法,CPSO不仅加快了运算速度,提高了图像分割效率,而且提高了图像分割准确率,非常适合于图像实时分割处理。

关键词: 图像分割,粒子群算法,阈值分割

Abstract: Aiming at image extraction problem, optimal threshold selection is key for image segmentation results. In processing different kinds of image region,because of particle swarm optimization algorithm (PSO)’s premature phenomenon, it is difficult to accurately calculate the optimal segmentation threshold image segmentation, and accuracy rate is low. In order to improve the segmentation accuracy and accurate extraction of the image target, this paper proposed a image threshold segmentation methods based on chaos particle swarm optimization algorithm(CPS()).Benefit from chaotic operation of ergodicity, sensitivity to initial conditions and other advantages, CPSO improves particle swarm premature aggregation and can notbe traped in a local optimum problem,accelerates the overall optimal solution search ability. The CPSO image segmentation performance is best by simulation experiment, and the experimental results show that, compared with other image segmentation algorithm, CPSO not only accelerates the speed of operation, improves the efficiency of image segmentation, but also improves the segmentation accuracy, and it is very suitable for real-time image segmentation.

Key words: Image segmentation, PSO algorithm,Threshold segmentation

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!