计算机科学 ›› 2012, Vol. 39 ›› Issue (Z6): 507-509.

• • 上一篇    下一篇

一种非参数核函数鉴别分析法及其在人脸识别中的应用

薛寺中,戴 飞,陈秀宏   

  1. (江南大学数字媒体学院 无锡214122);(江南大学物联网工程学院 无锡214122)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Non-parameter Kernel Function Discriminant Analysis Method and its Application in Face Recognition

  • Online:2018-11-16 Published:2018-11-16

摘要: 核判别分析(KDA)算法仅考虑c-1个判别特征,且计算类间离散度矩阵时需使用所有的训练样本,而一些有利于分类的边界结构未能被提取。为此,提出了一种非参数非线性(核)鉴别分析方法,其在计算特征空间中的类间散布矩阵时引入一个权值函数,从而能提取有利于分类的边界结构。仿真试验表明,新方法在识别性能上优于已有的一些方法,且避免了使用繁琐的矩阵奇异值分解理论,有一定的实用价值。

关键词: 核判别分析,非参数非线性,人脸识别,特征提取

Abstract: Because of kernel discriminant analysis(KDA) algorithm only considers c-1 discriminated features, and neglects to capture the boundary structure while computing between-class scatter matrix So an improved algorithm of non-parametric and nonlinear(kerncl) was proposed. It added a weight function during computing the between-class scatter matrix which can overcome the above two disadvantages of KDA. Simulation results show that the recognition performance of the new method is superior to those of the existed methods, and it can avoid using the singular value decomposition theory of the matrixes,so it has some practical value.

Key words: Kernel discriminant analysis, Non-parameter and nonlinear, Face recognition, Feature extraction

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!