计算机科学 ›› 2013, Vol. 40 ›› Issue (11): 169-173.

• 软件与数据库技术 • 上一篇    下一篇

基于LASSO-LARS的软件复杂性度量属性特征选择研究

周雁舟,乔辉,吴晓萍,邵楠,惠文涛   

  1. 中国人民解放军信息工程大学密码工程学院 郑州450004;中国人民解放军信息工程大学密码工程学院 郑州450004;兰州大学数学与统计学院 兰州730000;中国人民解放军信息工程大学密码工程学院 郑州450004;中国人民解放军信息工程大学密码工程学院 郑州450004
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家863项目计划(2008AA01Z404)资助

Research of Software Complexity Metric Attributes Feature Selection Based on LASSO-LARS

ZHOU Yan-zhou,QIAO Hui,WU Xiao-ping,SHAO Nan and HUI Wen-tao   

  • Online:2018-11-16 Published:2018-11-16

摘要: 针对软件可靠性早期预测中软件复杂性度量属性维数灾难问题,提出了一种基于最小绝对值压缩与选择方法(The Least Absolute Shrinkage and Select Operator,LASSO)和最小角回归(Least Angle Regression,LARS)算法的软件复杂性度量属性特征选择方法。该方法筛选掉一些对早期预测结果影响较小的软件复杂性度量属性,得到与早期预测关系最为密切的关键属性子集。首先分析了LASSO回归方法的特点及其在特征选择中的应用,然后对LARS算法进行了修正,使其可以解决LASSO方法所涉及的问题,得到相关的复杂性度量属性子集。最后结合学习向量量化(Learning Vector Quantization,LVQ)神经网络进行软件可靠性早期预测,并基于十折交叉方法进行实验。通过与传统特征选择方法相比较,证明所提方法可以显著提高软件可靠性早期预测精度。

关键词: 软件可靠性早期预测,特征选择,LASSO回归方法,LARS算法,LVQ神经网络

Abstract: To cope with the software complexity metric attributes dimension disaster which exists in the software reliability early prediction,this paper put forward a software complexity metric attribute feature selection method based on Least Absolute Shrinkage and Selection Operator(LASSO)method and the Least Angle Regression(LARS)algorithm.This method can filter out some software complexity metric attributes which have smaller influence on the early prediction results and can obtain the key attributes subsets associated most closely with the prediction result.This paper firstlyanalyzed the characteristics of LASSO regression method and its application in feature selection,secondly modified the LARS algorithm so that it can be used to solve the problems which LASSO method involves and get relevant complexity metric attribute subsets,lastly combined with the Learning Vector Quantization(LVQ)neural network to carry on the early software reliability prediction experiment.During the experiment,the authors used the 10-fold experiment methods.The experiment results indicate that the method can improve early prediction accuracy of software reliability.

Key words: Software reliability early prediction,Feature selection,LASSO regression method,LARS algorithm,LVQ neural network

[1] Vub C,Fb B,I-Ling Yen,et al.Empirical assessment of machine learning based software defect prediction techniques[C]∥Proceedings of the 10thIEEE International Workshop on Object-Oriented Real-Time Dependable Systems.Washington,DC,USA,2005:263-270
[2] 王琪.软件质量预测模型中的若干关键问题研究[D].上海:上海交通大学,2006
[3] 崔正斌.软件可靠性预测技术研究[D].郑州:信息工程大学,2010
[4] Breiman L,Friedman J,Olshen R,et al.Classification and regression trees[J].Data Mining and Knowledge Discovery,1984,1(1):14-23
[5] Breiman L.Better subset regression using the nonnegative garrote [J].Technometrics,1995,37(4):373-384
[6] 张玲,刘勇,何伟.自适应遗传算法在车牌定位中的应用[J].计算机应用,2008,28(1):185
[7] 姜慧研,宗茂,刘相莹.基于ACO-SVM的软件缺陷预测模型的研究[J].计算机学报,2011,34(6):1148-1154
[8] Tibshirani R.Regression shrinkage and selection via the lasso [J].J.Royal.Statist.Soc.(B),1996,58:267-288
[9] Halstead M.H.Elements of Software Science [M].New York:Elsevier North Holland,1977
[10] McCabe T J.A complexity measure[J].IEEE Transactions onSoftware Engineering,1976,SE-2(4):308-320
[11] 李轩,郝克刚,葛玮.面向对象软件度量的分析和研究[J].计算机技术与发展,2006,6(11):38-41
[12] Hastie T,Taylor J,Tibshirani R,et al.Forward stagewise re-gression and the monotone lasso[J].Electronic Journal of Statistic,2007,1:1-29
[13] Efron B,Hastie T,Johnstone I,et al.Least angle regression[J].Journal of the Institute of Mathematical Statistics,2004,32(2):407-499
[14] Gray D,Bowes D,Davey N,et al.The Misuse of the NASAMetrics Data Program Sets for Automated Software Defect Prediction.http://uhra.herts.ac.uk/dspace/bitstream/2299/6363/1/905745.pdf
[15] 高书亮,杨东凯,黄智刚.Galileo系统伪随机序列生成及其FPGA实现[J].微计算机信息,2008,24(26):124-125
[16] Wang X H,Shu P,Cao l,et al.A ROC curve method for performance evaluation of support vector machine with optimization strategy[J].Computer Science Technology and Applications,2009(2):117-120
[17] Fredman J H.Multivariate adaptive regression splines [J].Annals of Statistics,1991,19(1):1-67
[18] Hastie T,Taylor J,Tibshirani R,et al.Forward stagewise re-gression and the monotone Lasso[J].Electronic Journal of Statistic,2007,1:1-29
[19] 张靖,葛玮,郝克刚.软件度量中主成分分析方法的研究[J].计算机技术与发展,2006,12:144-148

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!