计算机科学 ›› 2013, Vol. 40 ›› Issue (12): 122-126.

• 综述 • 上一篇    下一篇

基于模糊神经网络的语义映射方法及其在自然图像检索中的应用

石跃祥,文华,龚平,莫浩澜,金银国   

  1. 智能计算与信息处理教育部重点实验室 湘潭411105;湘潭大学信息工程学院 湘潭411105;湘潭大学信息工程学院 湘潭411105;湘潭大学信息工程学院 湘潭411105;湖南省轻武器研究所 益阳413046
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受湖南省自然科学基金(14JJ2074) ,“十二五”国家科技支撑计划项目(子项目),湖南省重点学科建设项目资助

Projection of Semantics and Retrieval in Natural Scenery Images Based on Fuzzy Nerve Network

SHI Yue-xiang,WEN Hua,GONG Ping,MO Hao-lan and JIN Yin-guo   

  • Online:2018-11-16 Published:2018-11-16

摘要: 在CBIR研究中,图像低层视觉特征和高层语义特征之间存在的“语义鸿沟”成为语义图像检索的关键问题。为了避免一般映射方法把一幅图像归于一类语义图像的现象,体现自然风景图像中包含的丰富的高层语义信息和多归属类型,提出了对自然风景彩色图像中颜色较单一的目标区域,重复采用最优阈值化进行一次粗分割来提取最大目标区域,在分割区域的基础上,提取图像的局部颜色和形状特征,最后利用改进的模糊神经网络来建立低层视觉特征和高层语义特征之间的映射,实现了图像属性信息的有效传递和高层语义的自动获取。实验结果表明,该图像分割方法对自然彩色图像能够有效地提取目标物体,并对噪声图像具有一定的鲁棒性,而语义图像的部分类别的检索准确率接近90%,查全率也达到了75%,实验结果证明了该方法对自然图像检索的有效性及先进性。

关键词: 基于内容的图像检索,语义图像检索,图像分割,最优阈值化,鲁棒性,模糊神经网络

Abstract: With the development of Content-Based Image Retrieval (CBIR),the solution of "semantic gap" which exists between the low-features and the high-level semantic features has become the key problems of the semantic image retrieval.To avoid the general method maps an image into a class of semantic image,and reflect the natural scenery image contains a wealth of high-level semantic information and multi-homing type,this paper presented a process of repeating use of the optimal threshold for a roughly extraction of the largest target area with the color image.This color target area is comparatively singleness in the natural scenery images.On the basis of the divided regions,this paper extracted the color and shape features of each region,at last,the fuzzy nerve network was used to map low-features into the high-level semantic features,so it finally realized the image attribute information transfer effectively and obtained the high-level semantic automatically.Experimental results show that the method of image segmentation of natural color image can effectively extract the target object.It also has a certain degree of robustness to the noise images.The accurate retrieval rate approaches 90% and the recall rate also achieves 75% in some class image of the nature image database.The ex-perimental result shows the effectiveness and advancement of this method in the natural image retrieval.

Key words: Content-based image retrieval,Semantic image retrieval,Image segmentation,Optimal threshold,Robustness,Fuzzy nerve network

[1] Staikopoulos A,Cliffe O,Popescu R,et al.Template-Based Adaptation of Semantic Web Services with Model-Driven Enginee-ring[J].IEEE Transactions on Fuzzy System,2010,3(2):116-130
[2] Niu Jian-wei,Atlee J M,Day N A.Template semantics for model-based notations[J].IEEE Transactions on Software Engineering,2003,29(10):866-882
[3] Zhao R,Grosky W I.Narrowing the semantic gap improved text-based web document retrieval using visual features[J].IEEE Transaction on Multimedia,2002,4(2):189-200
[4] 鲍永生,任建锋,郭雷.支持语义的图像检索[J].南京航空航天大学学报,2005,37(1):75-78
[5] 成洁,石跃祥.基于SVM的图像低层特征与高层语义的关联 [J].计算机应用研究,2006,9(12):250-256
[6] 万华林,Chowdhury M U.基于支持向量机的图像语义分类[J].软件学报,2003(14):1891-1900
[7] 孙志杰,许宏丽.一种图像低层视觉特征到高层语义的映射方法[J].计算机应用,2004,4(12):22-24
[8] 周献中.基于HSV颜色空间加权Hu不变矩的台标识别[J].南京理工大学学报,2005,2(29):363-367
[9] 张智星,孙春在.神经-模糊和软计算[M].西安:西安交通大学出版社,2000(2):26-50
[10] 章毓晋.基于内容的视觉信息检索[M].北京:科学出版社,2003:57-130,401-421
[11] 刘宇红,刘桥,任强.基于模糊聚类神经网络的语音识别方法[J].计算机学报,2006,9(10):1894-1900
[12] 章毓晋.图像处理和分析[M].北京:科学出版社,2003(12):180-215
[13] 韩晓微,晏磊,原忠虎,等.基于BP神经网络的颜色模糊量化方法[J].系统仿真学报.2006,8(10):3007-3010
[14] Yu W,Li X O.Fuzzy identification using fuzzy neural networks with stable learning algorithms[J].IEEE Transactions on fuzzy system,2004,3(12):411-420
[15] Yong Y,Chi L H,Tsan M C.Intelligent Fabric Hand predication system with Fuzzy Neural Network[J].IEEE Transactions on Au,R.System,Man,and Cybernetics,Part C:App.and Reviews,2010,6(40):619-629
[16] 汪卫星.基于颜色和形状特征图像检索技术研究[D].长沙:长沙理工大学,2010
[17] Computer Vision Test Images.http://www.cs.cmu.edu/~cil/v-images.html
[18] 刘盈盈,石跃祥,莫浩澜.基于改进的动态聚类算法在彩色图像分割中的应用[J].计算机工程与应用,2008,4(29):191-192

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!