计算机科学 ›› 2013, Vol. 40 ›› Issue (12): 219-222.

• 软件与数据库技术 • 上一篇    下一篇

一种基于GridGIS的增量式协同过滤算法

邸佳奇,王霓虹   

  1. 哈尔滨师范大学计算机科学与信息工程学院 哈尔滨150025;东北林业大学信息与计算机工程学院 哈尔滨150040
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受黑龙江省教育厅科学技术研究项目:基于Android的智能教育资源信息平台构建研究(12531215)资助

Incremental Collaborative Filtering Algorithm Based on GridGIS

DI Jia-qi and WANG Ni-hong   

  • Online:2018-11-16 Published:2018-11-16

摘要: 空间数据的广泛应用需要高效的推荐系统来管理,以增加空间数据的可用性。用户协同过滤(Collaborative Filtering)是推荐系统中发展最为迅速的方法之一,也是在电子商务领域应用最广泛的方法。在研究传统协同过滤算法的基础上提出了一种减轻数据稀疏性对推荐效果产生的负面影响的方法。提出了一种基于项目相似度的数据填充方法,其目的在于当原始数据集比较稀疏时为算法提供足够的数据支持。经实验证明,改进算法在空间数据集上比传统方法有更好的预测性能和运行效率。

关键词: GIS,网格计算,GridGIS,协同过滤,增量算法

Abstract: Wide application of spatial data requires an efficient system to manage the recommendation in order to increase the availability of spatial data.Extensive application of spatial data requires an efficient framework to manage,in order to increase the availability of spatial data.Grid geographic information system (GridGIS) supports rapid spatial data retrieval,allowing users to transparently access data at any time in any place.Traditional similarity algorithm is mathematically very rigorous,has somewhat less usefulness and lacks data support.The experiment proves that algorithm in spatial data sets than the traditional method has better prediction performance and operating efficiency.

Key words: GIS,Grid computing,GridGIS,Collaborative filtering,Incremental algorithm

[1] 王铮,吴兵.GridGIS-基于网格计算的地理信息系统[J].计算机工程,2009(3):38-40
[2] 王金鑫.网格GIS的四重地理空间网格模型[J].武汉大学学报:信息科学版,2011(1):73-76
[3] Y Chuan,X Jie-ping.Recommendation algorithm combining the user-based classified regression and the item-based filtering[C]∥Processing of the International Conference on Electronic Commerce,Proceedings-the new E-commerce:Innovations for Conquering Current Barriers,Obstacles and Limit at ions to Conducting Success fu l Business on the Internet.2012:574-578
[4] Breese J,Hecherman D,Kadie C.Empirical analysis of predictive algorithm s f or collaborative filtering [C]∥Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI’98).2010:43-52
[5] Arwar B,Karypls G,Konstan J,et al.Item-based collaborative filtering recommendation algorithm s [C]∥Proceedings of the 10th International World Wide Web Conference.2009:285-295
[6] Kim B M,Li Q,Park C S,et al.A new approach f or combining content-based and collaborative filters [J].Journal of Intelligent Information System,2010,27(1):79-91
[7] Karypis G.Evaluat ion of item-based top-n recommendation algorithms [C]∥Proc.of the Tenth International Conference on Information and Knowledge Management.2009:247-254
[8] Deng Ai-lin,Zhu Yang-yong,Shi Bai-le.A collaborative filtering recommendation algorithm based on item rating prediction [J].Journal of Software,2010,14(9):1621-1628
[9] Arwar B,Karypis G,Konstan J,et al.Analysis of recommendation algorithms for E-commerce [C]∥Processing of 2nd ACM Conference on Electronic Commerce.2008:158-167

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!