计算机科学 ›› 2013, Vol. 40 ›› Issue (12): 304-307.

• 图形图像与模式识别 • 上一篇    下一篇

MB-LBP特征提取和粒子滤波相结合的运动目标检测与跟踪算法研究

瞿中,张亢,乔高元   

  1. 重庆邮电大学计算机科学与技术学院 重庆400065;重庆邮电大学计算机科学与技术学院 重庆400065;重庆邮电大学计算机科学与技术学院 重庆400065
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受重庆市科委自然科学基金计划资助

Research on Algorithm of Moving Target Detection and Tracking Based on MB-LBP Feature Extraction and Particle Filter

QU Zhong,ZHANG Kang and QIAO Gao-yuan   

  • Online:2018-11-16 Published:2018-11-16

摘要: 在复杂环境下,由于行人密度大以及运动随机性,导致运动目标(行人)难以检测和跟踪,造成人员计数误差。提出一种MB-LBP(Multi-scale Block Local Binary Pattern)特征提取和粒子滤波相结合的运动目标检测与跟踪算法来解决此问题。该算法首先用AdaBoost提取MB-LBP特征训练生成分类器进行人头检测,并根据人头目标尺寸变化范围去除部分误检,然后用改进的粒子滤波算法预测跟踪多个运动目标,最后对跟踪的运动目标进行计数。实验结果表明,提出的算法能够对复杂环境下多个运动目标进行有效检测及跟踪,准确、快速地对视频帧中的人员进行计数。

关键词: MB-LBP,AdaBoost,粒子滤波,运动目标检测,运动目标跟踪

Abstract: In complex environments,because of high density and movement randomness of pedestrians,it is too difficult to detect and track moving targets,therefore leading to counting errors.An algorithm of detecting and tracking moving targets combining the MB-LBP(Multi-scale Block Local Binary Pattern) feature extraction and particle filter algorithm was proposed in this paper.Firstly,we adopted the algorithm of AdaBoost to extract the MB-LBP features which are trained to generate a classifier,detect head targets,and remove part of false detection based on the size ranges of head targets.Secondly,we improved the original particle filter algorithm to predict and track moving targets.Finally,we counted the moving targets which are tracked.The experiments show that the algorithm can effectively detect and track multiple moving targets in complex environments,and count pedestrians in video frames accurately and rapidly.

Key words: MB-LBP,AdaBoost,Particle filter,Moving target detection,Moving target tracking

[1] 曾春,李晓华.基于感兴趣区梯度方向直方图的行人检测[J].计算机工程,2009,35(24):182-184
[2] Qu Zhong.Two Algorithms of Image Segmentation and Mea-surement Method of Particle’s Parameters[J].Applied Mathematics & Information Sciences,2012,6(1):105-109
[3] 瞿中.图像分割与评价及图像三维表面重建研究[D].重庆:重庆大学,2009
[4] Corvee E,Bremond F.Haar like and LBP based features forface,head and people detection in video sequences[C]∥International Workshop on Behaviour Analysis and Video Understan-ding.2011,9:10-19
[5] Sun H,Shen J,Chen B.LBP Based Fast Face Recognition System on Symbian Platform[J].AASRI Procedia,2012,1:276-281
[6] Zhang L,Chu R,Xiang S,et al.Face detection based on multi-block LBP representation[J].Advances in Biometrics,2007,4642:11-18
[7] Jia Zhi-juan,Wang Chen-sheng,Yang Guang,et al.A research of face feature extraction based on MB-LBP[C]∥Power Enginee-ring and Automation Conference.2011,3:69-72
[8] Ma S,Du T.Improved Adaboost Face Detection[C]∥Measuring Technology and Mechatronics Automation.2010,2:434-437
[9] Pavani S K,Delgado D,Frangi A F.Haar-like features with optimally weighted rectangles for rapid object detection[J].Pattern Recognition,2010,43(1):160-172
[10] Li Y.Particle filter tracking method based on dynamic template update strategy[C]∥Instrumentation & Measurement,Sensor Network and Automation.2012,1:179-182
[11] Sherrah J,Ristic B,Redding N J.Particle filter to track multiple people for visual surveillance[J].Computer Vision,IET,2011,5(4):192-200
[12] Qu Zhong,Zhang Qing-qing,Gan Teng-fei.Moving ObjectTracking Based on Codebook and Particle Filter[J].Procedia Engineering,2012,29:174-178

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!