摘要: 为了提高传统的协同过滤推荐系统的性能,首次提出了考虑时序性的基于滚动时间窗的用户一项目一时间三 维动态模型,并在此基础上研究了针对该模型的协同过滤推荐算法。该模型算法对不同时间的兴趣评分按时间序列 处理,用户兴趣相似度由不同时间段的分量组合而成,提高了算法的时效性;进而推导出了该模型的增量算法,利用增 量算法减少了计算相似度的时间复杂度,从而提高了算法的扩展性;最后设计了合理的实验,实验结果表明提出的三 维动态模型及算法在命中率性能上优于传统的二维协同过滤推荐模型及算法。
No related articles found! |
|