计算机科学 ›› 2013, Vol. 40 ›› Issue (2): 253-256.

• 人工智能 • 上一篇    下一篇

Ising图模型概率推理的计算复杂性

陈亚瑞   

  1. (天津科技大学计算机科学与信息工程学院 天津 300222)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Computational Complexity of Probabilistic Inference in Icing Graphical Model

  • Online:2018-11-16 Published:2018-11-16

摘要: 图模型概率推理的主要任务是通过对联合概率分布进行变量求和来计算配分函数、变量边缘概率分布、条件 概率分布等。图模型概率推理计算复杂性及近似概率推理的计算复杂性是一重要的理论问题,也是设计概率推理算 法和近似概率推理算法的理论基础。研究了Ising图模型概率推理的计算复杂性,包括概率推理的难解性及不可近似 性。具体地,通过构建#2 SA"I'问题到Icing图模型概率推理问题的多项式时间计数归约,证明在一般 Ising图模型上 计算配分函数、变量边缘概率分布、条件概率分布的概率推理问题是#P难的,同时证明Icing图模型近似概率推理问 题是NP难的,即一般Icing图模型上的概率推理问题是难解且不可近似的。

关键词: Icing图模型,概率推理,计算复杂性,难解性,不可近似性

Abstract: Probabilistic inference in graphical model is to compute the partition function, the marginal probability distri- bution,and the conditional probability distribution through summing variables of the joint probability distribution. The hardness and inapproximability of the probabilistic inference arc important problem, and arc the foundation to design the probabilistic inference algorithm and approximate probabilistic inference algorithm. We analyied the computational com- plexity of the exact probabilistic inference and approximate probabilistic inference. In particular, we constructed a coun- ting reduction from the#2SAT problem to the probabilistic inference problem in polynomial time,and proved that the problem of computing the partition function, marginal probability distribution and conditional probability distribution in a Ising graphical model is#P-hard. Moreover, approximating the probability distribution is NP-hard.

Key words: Ising graphical model, Probabilistic inference, Computational complexity, Hardness, Inapproximability

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!