计算机科学 ›› 2013, Vol. 40 ›› Issue (4): 231-235.

• 人工智能 • 上一篇    下一篇

不完备区间值信息系统中邻域粗集模型

王天擎,谢军   

  1. 五邑大学经济管理学院江门529020;江苏大学计算机科学与通信工程学院镇江 212013
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金(61003288),江苏省高校自然基金(10KJB520004),广东省自然科学基金(8452902001001552)资助

Neighborhood Based Rough Sets in Incomplete Interval-valued Information System

WANG Tian-qing and XIE Jun   

  • Online:2018-11-16 Published:2018-11-16

摘要: 目前对未知区间值的研究还处于起步阶段。以包含复杂的遗漏型未知区间值不完备信息系统为研究对象,提出了一种基于灰格运算和Hausdorff距离的新的邻域关系。在此基础上,依次提出了邻域关系、最大相容类和邻域系统3种灰色粗集模型。进一步讨论了3种灰色粗集模型之间的上、下近似空间,以提高近似空间的精确度,并用实例进行了分析及验证。

关键词: 粗糙集,不完备信息系统,区间值,邻域系统,最大相容类,Hausdorff 距离

Abstract: The study and use of the unknown interval value are still in its infancy.The complex incomplete interval-va-lued information system in which all unknown values are looked as lost was deeply investigated,and then by using grey lattice operation and Hausdorff distance,we provided a new neighborhood relationship in an interval-valued information system.Furthermore,three forms of rough set models were proposed based on neighborhood relationship,maximal consistent blocks and neighborhood system to improve the accuracy of approximations.Moreover,three numerical examples were employed to substantiate the conceptual arguments.

Key words: Rough set,Incomplete information system,Interval data,Neighborhood system,Maximal consistent block,Hausdorff distance

[1] Pawlak Z,Skowron A.Rudiments of rough sets[J].Information Sciences,2007,177:3-27
[2] Pawlak Z,Skowron A.Rough sets:some extensions[J].Infor-mation Sciences,2007,177:28-40
[3] 邓聚龙.灰色系统理论基本方法[M].武汉:华中科技大学出版社,2005
[4] Yamaguchi D.A grey-based rough approximation model for interval data processing[J].Information Sciences,2007,177:4727-4744
[5] Francisco De A T,Carvalho D,Renata M C R.Adaptive Hausdorff distances and dynamic clusteringof symbolic interval data[J].Pattern Recognition Letters,2006,27:167-179
[6] Wu Q,Liu Z T.Real formal concept analysis based on grey-rough set theory[J].Knowledge-Based Systems,2009,22:38-45
[7] Yang Y J,John R.Grey sets and greyness[J].Information Scien-ces,2012,185:249-264
[8] Kryszkiewicz M.Rough set approach to incomplete information systems[J].Information Sciences,1998,112:39-49
[9] Stefanowski J,Tsoukias A.Incomplete information tables andrough classification[J].Computational Intelligence,2001,17:545-566
[10] Zhu W,Wang F Y.Reduction and axiomization of covering gene-ralized roughsets[J].Information Sciences,2003,2:217-230
[11] Leung Y,Li D Y.Maximal consistent block technique for rule acquisition in incomplete information systems[J].Information Sciences,2003,115:85-106
[12] Guan Y Y,Wang H K,Wang Y,et al.Attribute reduction and optimal decision rules acquisition for continuous valued information systems[J].Information Sciences,2009,179:2974-2984
[13] Lin T Y.Neighborhood systems:mathematical models of information granulations[C]∥2003IEEE International Conference on Systems,Man &Cybernetics.2003:3188-3193
[14] Yang X B,Lin T Y.Knowledge operations in neighborhood system [C]∥2010IEEE International Conference on Granular Computing.2010:822-825
[15] Hu Q H.Neighborhood rough set based heterogeneous feature subset selection[J].Information Sciences,2010,178:3577-3594
[16] 王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243
[17] Yang X B,Zhang M.Neighborhood systems-based rough sets in incomplete information system[J].Knowledge-Based Systems,2011,24:858-867
[18] Yang X B,Yu D J,Yang J Y.Dominance-based rough set ap-proach to incomplete interval-valued information system [J].Data & Knowledge Engineering,2009,8:1331-1347

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!