计算机科学 ›› 2013, Vol. 40 ›› Issue (4): 259-262.

• 人工智能 • 上一篇    下一篇

基于混沌粒子群算法的多目标多执行模式项目调度问题研究

周蓉,叶春明,谢阳,陈君兰   

  1. 上海理工大学管理学院上海200093;上海理工大学管理学院上海200093;上海理工大学管理学院上海200093;上海理工大学管理学院上海200093
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受教育部人文社会科学规划基金项目 (10YJA630187),高等学校博士点基金 (20093120110008),上海市重点学科建设项目(S30504),上海研究生创新基金项目(JWCXSL1102),上海市教育委员会科研创新项目(12ZS133)资助

Research of Multi-objective and Multi-mode Project Scheduling Problem Based on Chaos Particle Swam Optimization

ZHOU Rong,YE Chun-ming,XIE Yang and CHEN Jun-lan   

  • Online:2018-11-16 Published:2018-11-16

摘要: 在工程项目调度中保持工期、成本、质量以及资源的均衡控制是构成项目建设总目标的关键因素,关系到整个工程的成败。同时,鉴于基本粒子群算法容易陷入局部最优,提出一种将混沌算法嵌入基本粒子群的新算法,并将其用于求解多目标项目调度问题,通过建立工期、费用、资源和质量多目标综合优化模型,再运用基于优先规则的混沌粒子群算法解决该模型问题。最终通过实例计算表明:相对于基本的粒子群算法,混沌粒子群算法可以更为准确快速地解决该模型下的项目多目标多执行模式优化调度问题。

关键词: 项目调度,多目标,多执行模式,混沌,粒子群算法

Abstract: Keeping the time,cost,quality and resources in balance is the key factor of building the general objective in the engineering project scheduling,which is related to the success or failure of the whole project.Basic particle swarm optimization is easy to trap in local optima.In this consideration ,this paper presented the chaos particle swarm optimization algorithm,built comprehensive optimization model by establishing time,expenses,resources and quality objective functions,and used chaos particle swarm optimization based on priority rule to solve this model problems.Through an application example,the article also proved that compared with basic particle swarm algorithm,the chaos particle swarm optimization algorithm can solve the multi-objective optimization problems of this model more accurately and rapidly.

Key words: Project scheduling,Multi-objective,Multi-mode,Chaos,Particle swarm optimization

[1] 骆刚,刘尔烈,王健.遗传算法在网络计划资源优化中的应用[J].天津大学学报,2004,7(2):179-183
[2] 刘永淞.DP法工期优化[J].湘潭大学学报,2002,4(1):106-108
[3] Kennedy J,Eberhart R C.Particle Swarm Optimization[C]∥IEEE International Conference on Neural Networks.Perth,Australia,1995(2):23-27
[4] 刘军民,高岳林.混沌粒子群优化算法[J].计算机应用,2008,8(2):322-325
[5] Zhang Hong,Li Xiao-dong,Li Heng.Particle swarm optimization-based schemes for Resource-constrained project scheduling [J].Automation in Construction,2005,4(3):393-404
[6] 王维博,冯全源.基于改进粒子群算法的工程项目综合优化[J].西南交通大学学报,2011,6(1):76-83
[7] 王健,刘尔烈,骆刚.工程项目管理中工期成本质量综合均衡优化[J].系统工程学报,2004,9(2):148-153
[8] 杨耀红,汪应洛,王能民.工程项目工期成本质量模糊均衡优化研究[J].系统工程理论与实践,2006,6(7):114-117
[9] Kaheled E,Amr K.Time-cost-quality-trade-off analysis forhighway construction[J].Journal of Construction Engineering and Management,2005,1(4):477-485
[10] Afshar A,Kaveh A,Shoghli O R.Multi-objective optimization of time-cost-quality using multi-colonyant algorithm [J].Asian Journal of Civil Engineering (Building and Housing),2007,8(2):113-124
[11] 陈君兰,叶春明.柔性资源受限多项目调度的混沌粒子群算法研究[J].计算机应用研究,2012,9(11)
[12] 彭武良,郝永平.求解资源受限项目调度问题的改进粒子群算法[J].系统工程,2010,4(28):84-88
[13] 谢阳,叶春明,陈君兰,等.基于混沌粒子群的资源受限项目调度问题[J].工业工程,2012,6(15)

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!