计算机科学 ›› 2013, Vol. 40 ›› Issue (4): 267-270.

• 图形图像与模式识别 • 上一篇    下一篇

基于线特征直方图的SAR图像预匹配算法

张慧慧,林伟,吕全义   

  1. 西北工业大学理学院西安710129;西北工业大学理学院西安710129;西北工业大学理学院西安710129
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金(10926197,0),西北工业大学基础研究基金(JC201053)资助

SAR Image Matching Pretreatment Algorithm Based on Line Feature Histogram

ZHANG Hui-hui,LIN Wei and LV Quan-yi   

  • Online:2018-11-16 Published:2018-11-16

摘要: 同一场景下的合成孔径雷达(SAR图像)的灰度特性由于相关噪声的影响及成像条件不同,可能存在很大差异,使得直接运用基于特征的图像匹配方法难于实现SAR图像高精度的配准。针对此问题,提出了一种SAR图像的预匹配方法,即运用占优的线特征信息,通过统计分析寻找出待匹配图像的角度和尺度变化,实现图像的预匹配。实验结果表明,该算法可以有效、精确地寻找出图像前后的角度和尺度变化。进而相比于传统直接基于特征配准图像的方法,经该算法预匹配处理后的图像再基于特征匹配时,其配准精度和效率都有很大的提高。

关键词: SAR图像,占优线特征,直方图,预匹配

Abstract: Due to the speckle noise and imaging conditions,there are great differences between the gray-level-statistics of synthetic aperture radar(SAR) images in the same scene,which makes it difficult for SAR images to realize high-precision registration based on direct application of image features.To solve the problem,we proposed a matching pretreatment algorithm to determine the angle and scale changes of the images by using the statistical analysis of the main line feature information,which can realize matching pretreatment of the images.Experimental results indicate that the algorithm can effectively and accurately find the angle and scale changes of both before and after images change.And while compared to the traditional method of image registration based on direct application of image features,the accuracy and efficiency of the SAR images which are matched by our matching pretreatment algorithm registration are greatly improved.

Key words: SAR image,Main line feature,Histogram,Matching pretreatment

[1] 李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,7(2):216-222
[2] Huang Yang,Liu Jin-shuo,Tu Mei-sheng,et al.Research onCUDA-based SIFT Registration of SAR Image[C]∥The 2011Fourth International Symposium on PAAP.Tianjin,China:IEEE,2011:100-104
[3] Bellavia F,Tegolo D,Valenti C.Improving Harris corner selection strategy[J].IET Computer Vision,2011,5(2):87-96
[4] Liu Zhao-xia,An Ju-bai,Jing Yu.A Simple and Robust Feature Point Matching Algorithm Based on Restricted Spatial Order Constraints for Aerial Image registration[J].IEEE Geoscience and Remote Sensing Society,2012,50(2):514-527
[5] 王光新,林有明,张送保.SAR图像数据稀疏性分析及在特征增强中的应用[J].计算机科学,2011,38(2):267-270
[6] Park S H, Lee K M,Lee S U K.A Line Feature MatchingTechnique Based on an Eigenvector Approach[J].Computer Vision and Image Understanding,2000,7(3):263-283
[7] Bin Mei.Line Feature Recognition Based on Differential Projection Transform[C]∥Information Engineering and Computer Science.Wuhan,China:IEEE,2009:1-4
[8] 冯桂,卢健,林宗坚.图像直方图不变特征在影像匹配定位中的应用[J].计算机辅助设计与图形学学报,2000,12(2):146-148
[9] Wang Wen-hao,Chen Yung-chang.Image registration by control points pairing using the invariant properties of line segments[J].Pattern Recognition Letters,1997,18(3):269-281
[10] Bay H,Tuytelaars T,Van Gool L.Speeded-Up Roubst Feature (SURF)[J].Computer Vision and Image Understanding,2008,0(3):346-359
[11] Bay H,Tuytelaars T,Van Gool L.SURF:Speeded-Up RoubstFeature[C]∥Computer Vision-ECCV.Graz,Austria:Springer Berlin,2006:404-417

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!