摘要: 同一场景下的合成孔径雷达(SAR图像)的灰度特性由于相关噪声的影响及成像条件不同,可能存在很大差异,使得直接运用基于特征的图像匹配方法难于实现SAR图像高精度的配准。针对此问题,提出了一种SAR图像的预匹配方法,即运用占优的线特征信息,通过统计分析寻找出待匹配图像的角度和尺度变化,实现图像的预匹配。实验结果表明,该算法可以有效、精确地寻找出图像前后的角度和尺度变化。进而相比于传统直接基于特征配准图像的方法,经该算法预匹配处理后的图像再基于特征匹配时,其配准精度和效率都有很大的提高。
[1] 李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,7(2):216-222 [2] Huang Yang,Liu Jin-shuo,Tu Mei-sheng,et al.Research onCUDA-based SIFT Registration of SAR Image[C]∥The 2011Fourth International Symposium on PAAP.Tianjin,China:IEEE,2011:100-104 [3] Bellavia F,Tegolo D,Valenti C.Improving Harris corner selection strategy[J].IET Computer Vision,2011,5(2):87-96 [4] Liu Zhao-xia,An Ju-bai,Jing Yu.A Simple and Robust Feature Point Matching Algorithm Based on Restricted Spatial Order Constraints for Aerial Image registration[J].IEEE Geoscience and Remote Sensing Society,2012,50(2):514-527 [5] 王光新,林有明,张送保.SAR图像数据稀疏性分析及在特征增强中的应用[J].计算机科学,2011,38(2):267-270 [6] Park S H, Lee K M,Lee S U K.A Line Feature MatchingTechnique Based on an Eigenvector Approach[J].Computer Vision and Image Understanding,2000,7(3):263-283 [7] Bin Mei.Line Feature Recognition Based on Differential Projection Transform[C]∥Information Engineering and Computer Science.Wuhan,China:IEEE,2009:1-4 [8] 冯桂,卢健,林宗坚.图像直方图不变特征在影像匹配定位中的应用[J].计算机辅助设计与图形学学报,2000,12(2):146-148 [9] Wang Wen-hao,Chen Yung-chang.Image registration by control points pairing using the invariant properties of line segments[J].Pattern Recognition Letters,1997,18(3):269-281 [10] Bay H,Tuytelaars T,Van Gool L.Speeded-Up Roubst Feature (SURF)[J].Computer Vision and Image Understanding,2008,0(3):346-359 [11] Bay H,Tuytelaars T,Van Gool L.SURF:Speeded-Up RoubstFeature[C]∥Computer Vision-ECCV.Graz,Austria:Springer Berlin,2006:404-417 |
No related articles found! |
|